Global existence of the strong solution to the 3D incompressible micropolar equations with fractional partial dissipation

被引:0
|
作者
Liu, Yujun [1 ]
机构
[1] Panzhihua Univ, Dept Math & Comp, Panzhihua 617000, Peoples R China
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2023年 / 75卷 / 05期
关键词
Incompressible micropolar; gractional; partial dissipation; FLUID SYSTEM; WELL-POSEDNESS; WEAK SOLUTIONS; REGULARITY;
D O I
10.4153/S0008414X22000414
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we considered the global strong solution to the 3D incompressible micropolar equations with fractional partial dissipation. Whether or not the classical solution to the 3D Navier-Stokes equations can develop finite-time singularity remains an outstanding open problem, so does the same issue on the 3D incompressible micropolar equations. We establish the global-in-time existence and uniqueness strong solutions to the 3D incompressible micropolar equations with fractional partial velocity dissipation and microrotation diffusion with the initial data (u(0), w(0)) is an element of H-1(R-3).
引用
收藏
页码:1516 / 1539
页数:24
相关论文
共 50 条
  • [21] Global existence and exponential decay of strong solutions for the 3D incompressible MHD equations with density-dependent viscosity coefficient
    Liu, Yang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (04):
  • [22] Global regularity for the 2D magneto-micropolar system with partial and fractional dissipation
    Liu, Yujun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2491 - 2515
  • [23] On the Global Existence of Strong Solution to the 3D Damped Boussinesq Equations with Zero Thermal Diffusion
    Wen, Zhihong
    Ye, Zhuan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (03): : 341 - 348
  • [24] Stability for a system of the 2D incompressible magneto-micropolar fluid equations with partial mixed dissipation
    Lin, Hongxia
    Liu, Sen
    Zhang, Heng
    Sun, Qing
    NONLINEARITY, 2024, 37 (05)
  • [25] Global strong solutions to the 3D incompressible MHD equations with density-dependent viscosity
    Yu, Haibo
    Zhang, Peixin
    Shi, Xiujuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2825 - 2834
  • [26] GLOBAL ATTRACTORS OF THE 3D MICROPOLAR EQUATIONS WITH DAMPING TERM
    Yang, Xiaojie
    Liu, Hui
    Sun, Chengfeng
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2021, 4 (02): : 117 - 130
  • [27] Global smooth solution to the 2D Boussinesq equations with fractional dissipation
    Ye, Zhuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (12) : 4595 - 4612
  • [28] GLOBAL SOLVABILITY TO THE 3D INCOMPRESSIBLE MAGNETO-MICROPOLAR SYSTEM WITH VACUUM
    LIU, Y. A. N. G.
    ZHOU, N. A. N.
    GUO, R. E. N. Y. I. N. G.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (12): : 7721 - 7743
  • [29] Global Existence of Strong Solution to 3D Atmospheric Thermal Equation
    Dou, Changsheng
    Xu, Yawen
    4TH INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY RESOURCES AND ENVIRONMENT ENGINEERING, 2019, 237
  • [30] Global regularity and decay estimates for 2D magneto-micropolar equations with partial dissipation
    Shang, Haifeng
    Gu, Chuanwei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (03):