A multi-source transfer learning model based on LSTM and domain adaptation for building energy prediction

被引:44
作者
Lu, Huiming [1 ]
Wu, Jiazheng [1 ]
Ruan, Yingjun [1 ]
Qian, Fanyue [1 ]
Meng, Hua [1 ]
Gao, Yuan [2 ]
Xu, Tingting [1 ]
机构
[1] Tongji Univ, Coll Mech & Energy Engn, Shanghai 200092, Peoples R China
[2] Univ Tokyo, Grad Sch Engn, Dept Architecture, Tokyo, Japan
关键词
Building energy prediction; Transfer learning; Multi; -source; Energy consumption; Domain adaptation; LOAD;
D O I
10.1016/j.ijepes.2023.109024
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Transfer learning can use the knowledge learned from the operating data of other buildings to facilitate the energy prediction of a target building. However, most of the current research focuses on the transfer of a single source building of the same type or from the same region. A single source domain produces domain shift due to the difficulty of aligning the distribution with the target domain. To address this problem, this paper proposes a novel multi-source transfer learning energy prediction model based on long short-term memory (LSTM) and multi-kernel maximum mean difference (MK-MMD) domain adaptation. This model was used for the short-term energy prediction of different types of buildings lacking historical data. In addition, dynamic time warping (DTW) was used to select the source domain. Multiple multi-source models and corresponding single-source models were compared on a collection of buildings in the Higashida area of Fukuoka Prefecture, Japan. On the experimental datasets, the results showed that DTW relatively accurately measured the similarity between building energy consumption datasets. Compared with the results of the single-source transfer learning models, the multi-source transfer learning models achieved better average prediction performance, and their mean ab-solute percentage error (MAPE) improved the prediction accuracy by 6.88-15.37%.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Multi-source domain adaptation with joint learning for cross-domain sentiment classification
    Zhao, Chuanjun
    Wang, Suge
    Li, Deyu
    KNOWLEDGE-BASED SYSTEMS, 2020, 191
  • [32] Multi-source Domain Adaptation for Face Recognition
    Yi, Haiyang
    Xu, Zhi
    Wen, Yimin
    Fan, Zhigang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1349 - 1354
  • [33] A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis
    Tian, Jinghui
    Han, Dongying
    Li, Mengdi
    Shi, Peiming
    KNOWLEDGE-BASED SYSTEMS, 2022, 243
  • [34] Multi-Source Transfer Learning for EEG Classification Based on Domain Adversarial Neural Network
    Liu, Dezheng
    Zhang, Jia
    Wu, Hanrui
    Liu, Siwei
    Long, Jinyi
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 218 - 228
  • [35] Multi-source domain adaptation handling inaccurate label spaces
    Li, Keqiuyin
    Lu, Jie
    Zuo, Hua
    Zhang, Guangquan
    NEUROCOMPUTING, 2024, 594
  • [36] Transformer-Based Multi-Source Domain Adaptation Without Source Data
    Li, Gang
    Wu, Chao
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [37] Dynamic Classifier Alignment for Unsupervised Multi-Source Domain Adaptation
    Li, Keqiuyin
    Lu, Jie
    Zuo, Hua
    Zhang, Guangquan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 4727 - 4740
  • [38] Multi-Source Domain Adaptation via Latent Domain Reconstruction
    Zhou, Jun
    Fu, Chilin
    Zhang, Xiaolu
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 523 - 527
  • [39] Evidential combination of augmented multi-source of information based on domain adaptation
    Linqing Huang
    Zhunga Liu
    Quan Pan
    Jean Dezert
    Science China Information Sciences, 2020, 63
  • [40] Evidential combination of augmented multi-source of information based on domain adaptation
    Huang, Linqing
    Liu, Zhunga
    Pan, Quan
    Dezert, Jean
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (11)