Dual Projective Zero-Shot Learning Using Text Descriptions

被引:7
|
作者
Rao, Yunbo [1 ]
Yang, Ziqiang [1 ]
Zeng, Shaoning [2 ]
Wang, Qifeng [3 ]
Pu, Jiansu [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, 4,Sect 2,North Jianshe Rd, Chengdu 610054, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Chengdu 313000, Sichuan, Peoples R China
[3] Google Berkeley, Berkeley, CA 94720 USA
[4] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, 4,Sect 2,North Jianshe Rd, Chengdu 610054, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Zero-shot learning; generalized zero-shot learning; autoencoder; inductive zero-shot learning;
D O I
10.1145/3514247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Zero-shot learning (ZSL) aims to recognize image instances of unseen classes solely based on the semantic descriptions of the unseen classes. In this field, Generalized Zero-Shot Learning (GZSL) is a challenging problem in which the images of both seen and unseen classes are mixed in the testing phase of learning. Existing methods formulate GZSL as a semantic-visual correspondence problem and apply generative models such as Generative Adversarial Networks and Variational Autoencoders to solve the problem. However, these methods suffer from the bias problem since the images of unseen classes are often misclassified into seen classes. In this work, a novel model named the Dual Projective model for Zero-Shot Learning (DPZSL) is proposed using text descriptions. In order to alleviate the bias problem, we leverage two autoencoders to project the visual and semantic features into a latent space and evaluate the embeddings by a visual-semantic correspondence loss function. An additional novel classifier is also introduced to ensure the discriminability of the embedded features. Our method focuses on a more challenging inductive ZSL setting in which only the labeled data from seen classes are used in the training phase. The experimental results, obtained from two popular datasets-Caltech-UCSD Birds-200-2011 (CUB) and North America Birds (NAB)-show that the proposed DPZSL model significantly outperforms both the inductive ZSL and GZSL settings. Particularly in the GZSL setting, our model yields an improvement up to 15.2% in comparison with state-of-the-art CANZSL on datasets CUB and NAB with two splittings.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Towards Open Zero-Shot Learning
    Marmoreo, Federico
    Carrazco, Julio Ivan Davila
    Cavazza, Jacopo
    Murino, Vittorio
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 564 - 575
  • [32] Variational Disentangle Zero-Shot Learning
    Su, Jie
    Wan, Jinhao
    Li, Taotao
    Li, Xiong
    Ye, Yuheng
    MATHEMATICS, 2023, 11 (16)
  • [33] Detecting Errors with Zero-Shot Learning
    Wu, Xiaoyu
    Wang, Ning
    ENTROPY, 2022, 24 (07)
  • [34] Prototype rectification for zero-shot learning
    Yi, Yuanyuan
    Zeng, Guolei
    Ren, Bocheng
    Yang, Laurence T.
    Chai, Bin
    Li, Yuxin
    PATTERN RECOGNITION, 2024, 156
  • [35] A review on multimodal zero-shot learning
    Cao, Weipeng
    Wu, Yuhao
    Sun, Yixuan
    Zhang, Haigang
    Ren, Jin
    Gu, Dujuan
    Wang, Xingkai
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (02)
  • [36] Attribute subspaces for zero-shot learning
    Zhou, Lei
    Liu, Yang
    Bai, Xiao
    Li, Na
    Yu, Xiaohan
    Zhou, Jun
    Hancock, Edwin R.
    PATTERN RECOGNITION, 2023, 144
  • [37] LVQ Treatment for Zero-Shot Learning
    Ismailoglu, Firat
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2023, 31 (01) : 216 - 237
  • [38] Zero-Shot Learning with Joint Generative Adversarial Networks
    Zhang, Minwan
    Wang, Xiaohua
    Shi, Yueting
    Ren, Shiwei
    Wang, Weijiang
    ELECTRONICS, 2023, 12 (10)
  • [39] Joint Visual and Semantic Optimization for zero-shot learning
    Wu, Hanrui
    Yan, Yuguang
    Chen, Sentao
    Huang, Xiangkang
    Wu, Qingyao
    Ng, Michael K.
    KNOWLEDGE-BASED SYSTEMS, 2021, 215 (215)
  • [40] Zero-shot learning for compound fault diagnosis of bearings
    Xu, Juan
    Zhou, Long
    Zhao, Weihua
    Fan, Yuqi
    Ding, Xu
    Yuan, Xiaohui
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 190