An Approach for Potato Yield Prediction Using Machine Learning Regression Algorithms

被引:1
|
作者
Patnaik, Prabhu Prasad [1 ]
Padhy, Neelamadhab [1 ]
机构
[1] GIET Univ, Sch Engn & Technol, Dept CSE, Gunupur 765022, Odisha, India
来源
关键词
Machine learning; Potato yield prediction; Linear regression algorithm;
D O I
10.1007/978-981-19-1412-6_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Agriculture is backbone of any country's economy, and also, good crop yield is highly essential for supporting the growing demand of increasing population. By using machine learning, we will be able to predict the crop yield and also the right crop that can be grown in a particular area by analyzing the soil data and the weather data of the particular location. This study mainly focuses on how supervised and unsupervised machine learning approach help in the prediction. Different machine learning algorithms include KNN algorithm, SVM, linear regression, logistic regression, NB, LDA, and decision trees. Taking different dataset preprocessing operation is performed, and missing data are modified so that it does not affect the prediction. Then, the processed data are utilized by the machine learning algorithms for making the prediction. The dataset is divided into training set and test set, and the accuracy of prediction is verified. There are different performance metrics which can be used to evaluate the accuracy in prediction of the algorithms like MSE, MAE, and RMSE, coefficients of determination metrics (R-2), confusion matrix, accuracy, precision, recall, and F1-score.
引用
收藏
页码:327 / 336
页数:10
相关论文
共 50 条
  • [1] Crop Yield Prediction Using Machine Learning Algorithms
    Nigam, Aruvansh
    Garg, Saksham
    Agrawal, Archit
    Agrawal, Parul
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 125 - 130
  • [2] Prediction of Teff Yield Using a Machine Learning Approach
    Mulatu, Adugna Necho
    Tamir, Eneyachew
    ARTIFICIAL INTELLIGENCE AND DIGITALIZATION FOR SUSTAINABLE DEVELOPMENT, ICAST 2022, 2023, 455 : 159 - 176
  • [3] Analysis of Diabetic Prediction & Regression System using Machine Learning Algorithms
    Ghodeswar, Ujwala
    Keote, Minal
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 750 - 762
  • [4] Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data
    Gomez, Diego
    Salvador, Pablo
    Sanz, Julia
    Luis Casanova, Jose
    REMOTE SENSING, 2019, 11 (15)
  • [5] Loan Repayment Prediction Using Logistic Regression Ensemble Learning With Machine Learning Algorithms
    Dinh, Thuan Nguyen
    Thanh, Binh Pham
    2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 79 - 85
  • [6] Yield prediction with machine learning algorithms and satellite images
    Sharifi, Alireza
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2021, 101 (03) : 891 - 896
  • [7] Comparison of machine learning algorithms for slope stability prediction using an automated machine learning approach
    Kurnaz, Talas Fikret
    Erden, Caner
    Dagdeviren, Ugur
    Demir, Alparslan Serhat
    Kokcam, Abdullah Hulusi
    NATURAL HAZARDS, 2024, 120 (08) : 6991 - 7014
  • [8] Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize
    Kuradusenge, Martin
    Hitimana, Eric
    Hanyurwimfura, Damien
    Rukundo, Placide
    Mtonga, Kambombo
    Mukasine, Angelique
    Uwitonze, Claudette
    Ngabonziza, Jackson
    Uwamahoro, Angelique
    AGRICULTURE-BASEL, 2023, 13 (01):
  • [9] Analytical Approach towards Prediction of Diseases Using Machine Learning Algorithms
    Grover, Ayushi
    Kalani, Anukriti
    Dubey, Sanjay Kumar
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 793 - 797
  • [10] A novel approach for cardiovascular disease prediction using machine learning algorithms
    Arunachalam, Saran Kumar
    Rekha, Rajagopal
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (19):