Graded rings of Hermitian modular forms with singularities

被引:1
作者
Wang, Haowu [1 ]
Williams, Brandon [2 ]
机构
[1] Inst Basic Sci IBS, Ctr Geometry & Phys, Pohang 37673, South Korea
[2] Rhein Westfal TH Aachen, Lehrstuhl Math A, D-52056 Aachen, Germany
关键词
THEOREM;
D O I
10.1007/s00229-021-01367-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study graded rings of meromorphic Hermitian modular forms of degree two whose poles are supported on an arrangement of Heegner divisors. For the group SU2,2(O-K) where K is the imaginary-quadratic number field of discriminant -d, d is an element of {4, 7, 8, 11, 15, 19, 20, 24} we obtain a polynomial algebra without relations. In particular the Looijenga compactifications of the arrangement complements are weighted projective spaces.
引用
收藏
页码:283 / 311
页数:29
相关论文
共 22 条
[1]  
Borcherds, 2018, THESIS UC BERKELEY
[2]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[3]   The Gross-Kohnen-Zagier theorem in higher dimensions [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (02) :219-233
[4]   On the converse theorem for Borcherds products [J].
Bruinier, Jan Hendrik .
JOURNAL OF ALGEBRA, 2014, 397 :315-342
[5]   On Borcherds products associated with lattices of prime discriminant [J].
Bruinier, JH ;
Bundschuh, M .
RAMANUJAN JOURNAL, 2003, 7 (1-3) :49-61
[6]   The graded ring of Hermitian modular forms of degree 2 over Q (√-2) [J].
Dern, T ;
Krieg, A .
JOURNAL OF NUMBER THEORY, 2004, 107 (02) :241-265
[7]   Graded rings of Hermitian modular forms of degree 2 [J].
Dern, T ;
Krieg, A .
MANUSCRIPTA MATHEMATICA, 2003, 110 (02) :251-272
[8]  
Eichler M., 1985, Progress in Mathematics, V55
[9]  
Freitag E, 1967, S B HEIDELBERGER MN, V1967, P3
[10]   Congruence subgroups and orthogonal groups [J].
Hauffe-Waschbuesch, Adrian ;
Krieg, Aloys .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 618 :22-36