EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER AND PRESSURE DROP CHARACTERISTICS OF FERROFLUIDS IN THE PRESENCE OF MAGNETIC FIELD AND LAMINAR FLOW CONDITIONS

被引:0
作者
Muratcobanoglu, Burak [1 ]
Mandeev, Emre [1 ]
Omeroglu, Gokhan [2 ]
Manay, Eyuephan [1 ]
机构
[1] Erzurum Tech Univ, Dept Mech Engn, Erzurum, Turkiye
[2] Ataturk Univ, Dept Mech Engn, Erzurum, Turkiye
关键词
alternating magnetic field; magnetic nanofluid; minichannel; forced convection; laminar flow; THERMAL-CONDUCTIVITY; TRANSFER ENHANCEMENT; PERFORMANCE ANALYSIS; NANOFLUIDS; HYBRID; NANOPARTICLES; EFFICIENCY;
D O I
10.1615/HeatTransRes.2023048968
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, the heat transfer performance with forced convection of two different water-based nanofluids was investigated by applying an alternating magnetic field in a minichannel. CoFe2O4-water and MnFe2O4-water nanofluids have been prepared at 0.5 vol.% and tested. The tests were carried out in a minichannel under laminar flow conditions in the Reynolds numbers range of 300-1700. Nusselt numbers of each fluid used in the experiments were calculated and compared. At the Reynolds number of 1500, the CoFe2O4-water nanofluid exhibited an increase of 12% compared to pure water, while the MnFe2O4-water nanofluid showed an increase of 4%. The Nusselt number increased in both nanofluids by applying the magnetic field to nanofluids. The highest Nusselt number obtained was 9.35 for the CoFe2O4-water nanofluid in the presence of magnetic field. While this increase was more pronounced at low Reynolds numbers, a lower rate of increase was obtained at high Reynolds numbers. In addition, the use of nanofluids significantly increased the pressure drop compared to the base fluid. While an almost 100% increase in the pressure drop was observed for the CoFe2O4-water nanofluid compared to pure water, the 65% increase for the MnFe2O4-water nanofluid was maximum. At the highest Reynolds numbers, the maximum pressure drops were determined as 3.4 kPa for the CoFe2O4-water nanofluid and 3 kPa for the MnFe2O4-water nanofluid. It was also detected that the friction factor for CoFe2O4-water and MnFe2O4-water nanofluids was 80% and 40% higher, respectively, than for the base fluid.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [31] Experimental investigation of shell side heat transfer and pressure drop in a mini-channel shell and tube heat exchanger
    Kucuk, Hasan
    Unverdi, Murat
    Yilmaz, Mehmet Senan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 143
  • [32] Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime
    Heyhat, M. M.
    Kowsary, F.
    Rashidi, A. M.
    Momenpour, M. H.
    Amrollahi, A.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2013, 44 : 483 - 489
  • [33] Investigation of Nanofluid Flow and Heat Transfer in Presence of Magnetic Field Using KKL Model
    Sheikholeslami, M.
    Gorji-Bandpy, M.
    Ganji, D. D.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (06) : 5007 - 5016
  • [34] EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER AND PRESSURE DROP OF CONICAL COIL HEAT EXCHANGER
    Purandare, Pramod S.
    Lele, Mandar M.
    Gupta, Raj K.
    THERMAL SCIENCE, 2016, 20 (06): : 2087 - 2099
  • [35] Experimental investigation of laminar flow and heat transfer in internally finned tubes
    Shome, B
    Jensen, MK
    JOURNAL OF ENHANCED HEAT TRANSFER, 1996, 4 (01) : 53 - 70
  • [36] Experimental Investigation of Coil Curvature Effect on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger
    Salem, M. R.
    Elshazly, K. M.
    Sakr, R. Y.
    Ali, R. K.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2015, 7 (01)
  • [37] Numerical study on heat transfer and pressure drop in laminar-flow multistage mini-channel heat sink
    Kim, Yeongseok
    Kim, Myungjoon
    Ahn, Chisung
    Kim, Hyeong U.
    Kang, Sang-Woo
    Kim, Taesung
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 108 : 1197 - 1206
  • [38] A Review of Heat Transfer and Pressure Drop Correlations for Laminar Flow in Curved Circular Ducts
    Ghobadi, Mehdi
    Muzychka, Yuri Stephan
    HEAT TRANSFER ENGINEERING, 2016, 37 (10) : 815 - 839
  • [39] Experimental investigation on nanofluid flow boiling heat transfer in a vertical tube under different pressure conditions
    Wang, Y.
    Su, G. H.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2016, 77 : 116 - 123
  • [40] Effect of surfactants on the convective heat transfer and pressure drop characteristics of ZnO/DIW nanofluids: An experimental study
    Qamar, Adnan
    Shaukat, Rabia
    Imran, Shahid
    Farooq, Muhammad
    Amjad, Muhammad
    Anwar, Zahid
    Ali, Hassan
    Farhan, Muhammad
    Mujtaba, M. A.
    Korakianitis, Theodosios
    Kalam, M. A.
    Almomani, Fares
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 42