Phase transition and universality of the majority-rule model on complex networks

被引:5
|
作者
Mulya, Didi Ahmad [1 ,2 ]
Muslim, Roni [1 ]
机构
[1] Natl Res & Innovat Agcy BRIN, Res Ctr Quantum Phys, South Tangerang 15314, Indonesia
[2] Univ Technol Yogyakarta, Dept Ind Engn, Yogyakarta 55285, Indonesia
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2024年 / 35卷 / 10期
关键词
Opinion dynamics; complex networks; phase transition; universality; social noises; OPINION DYNAMICS; SZNAJD MODEL; VOTE MODEL; STATISTICAL PHYSICS; INDEPENDENCE; CONFORMITY; EVOLUTION; DISORDER; SYSTEMS;
D O I
10.1142/S0129183124501250
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we investigate the phenomena of order-disorder phase transition and the universality of the majority-rule model defined on three complex networks, namely the Barabasi-Albert, Watts-Strogatz and Erdos-Renyi networks. Assume each agent holds two possible opinions randomly distributed across the networks' nodes. Agents adopt anticonformity and independence behaviors, represented by the probability p, where with a probability p, agents adopt anticonformity or independence behavior. Based on our numerical simulation results and finite-size scaling analysis, it is found that the model undergoes a continuous phase transition for all networks, with critical points for the independence model greater than those for the anticonformity model in all three networks. We obtain critical exponents identical to the opinion dynamics model defined on a complete graph, indicating that the model exhibits the same universality class as the mean-field Ising model.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Structural phase transition in evolving networks
    Kim, Sang-Woo
    Noh, Jae Dong
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [32] Quantum Phase Transition and Universality Class for a Boson-Impurity Model: Implications for the Spin-Boson Model
    Fischer, Kurt
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (07)
  • [33] Universality of the Berezinskii-Kosterlitz-Thouless type of phase transition in the dipolar XY-model
    Vasiliev, A. Yu
    Tarkhov, A. E.
    Menshikov, L. I.
    Fedichev, P. O.
    Fischer, Uwe R.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [34] Phase transitions in the majority-vote model with two types of noises
    Vieira, Allan R.
    Crokidakis, Nuno
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 450 : 30 - 36
  • [35] Three-speed ballistic annihilation: phase transition and universality
    John Haslegrave
    Vladas Sidoravicius
    Laurent Tournier
    Selecta Mathematica, 2021, 27
  • [36] Zipf's law and the universality class of the fragmentation phase transition
    Bauer, Wolfgang
    Pratt, Scott
    Allernan, Brandon
    VI LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS, 2007, 884 : 327 - +
  • [37] Three-speed ballistic annihilation: phase transition and universality
    Haslegrave, John
    Sidoravicius, Vladas
    Tournier, Laurent
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (05):
  • [38] Phase Transition of the 2-Choices Dynamics on Core-Periphery Networks
    Cruciani, Emilio
    Natale, Emanuele
    Nusser, Andre
    Scornavacca, Giacomo
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 777 - 785
  • [39] A robust transition to homochirality in complex chemical reaction networks
    Laurent, Gabin
    Gaspard, Pierre
    Lacoste, David
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2257):
  • [40] Second-order phase transition and universality of self-buckled elastic slender columns
    Margaretta, Desyana Olenka
    Amalia, Nadya
    Utami, Fisca Dian
    Viridi, Sparisoma
    Abdullah, Mikrajuddin
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 1128 - 1136