Phase transition and universality of the majority-rule model on complex networks

被引:6
作者
Mulya, Didi Ahmad [1 ,2 ]
Muslim, Roni [1 ]
机构
[1] Natl Res & Innovat Agcy BRIN, Res Ctr Quantum Phys, South Tangerang 15314, Indonesia
[2] Univ Technol Yogyakarta, Dept Ind Engn, Yogyakarta 55285, Indonesia
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2024年 / 35卷 / 10期
关键词
Opinion dynamics; complex networks; phase transition; universality; social noises; OPINION DYNAMICS; SZNAJD MODEL; VOTE MODEL; STATISTICAL PHYSICS; INDEPENDENCE; CONFORMITY; EVOLUTION; DISORDER; SYSTEMS;
D O I
10.1142/S0129183124501250
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we investigate the phenomena of order-disorder phase transition and the universality of the majority-rule model defined on three complex networks, namely the Barabasi-Albert, Watts-Strogatz and Erdos-Renyi networks. Assume each agent holds two possible opinions randomly distributed across the networks' nodes. Agents adopt anticonformity and independence behaviors, represented by the probability p, where with a probability p, agents adopt anticonformity or independence behavior. Based on our numerical simulation results and finite-size scaling analysis, it is found that the model undergoes a continuous phase transition for all networks, with critical points for the independence model greater than those for the anticonformity model in all three networks. We obtain critical exponents identical to the opinion dynamics model defined on a complete graph, indicating that the model exhibits the same universality class as the mean-field Ising model.
引用
收藏
页数:14
相关论文
共 63 条
[1]   Is Independence Necessary for a Discontinuous Phase Transition within the q-Voter Model? [J].
Abramiuk, Angelika ;
Pawlowski, Jakub ;
Sznajd-Weron, Katarzyna .
ENTROPY, 2019, 21 (05)
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]   Droplet finite-size scaling of the majority-vote model on scale-free networks [J].
Alencar, D. S. M. ;
Alves, T. F. A. ;
Lima, F. W. S. ;
Ferreira, R. S. ;
Alves, G. A. ;
Macedo-Filho, A. .
PHYSICAL REVIEW E, 2023, 108 (01)
[4]   Opinion Dynamics Systems on Barabasi-Albert Networks: Biswas-Chatterjee-Sen Model [J].
Alencar, David S. M. ;
Alves, Tayroni F. A. ;
Alves, Gladstone A. ;
Macedo-Filho, Antonio ;
Ferreira, Ronan S. ;
Lima, F. Welington S. ;
Plascak, Joao A. .
ENTROPY, 2023, 25 (02)
[5]   The dissemination of culture - A model with local convergence and global polarization [J].
Axelrod, R .
JOURNAL OF CONFLICT RESOLUTION, 1997, 41 (02) :203-226
[6]   The external field effect on the opinion formation based on the majority rule and the q-voter models on the complete graph [J].
Azhari ;
Muslim, Roni .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (07)
[7]  
Binder K., 1992, Monte Carlo simulation in statistical mechanics
[8]   Model of binary opinion dynamics: Coarsening and effect of disorder [J].
Biswas, Soham ;
Sen, Parongama .
PHYSICAL REVIEW E, 2009, 80 (02)
[9]   Phase transitions and universality in the Sznajd model with anticonformity [J].
Calvelli, Matheus ;
Crokidakis, Nuno ;
Penna, Thadeu J. P. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 513 :518-523
[10]   Small-world effects in the majority-vote model [J].
Campos, PRA ;
de Oliveira, VM ;
Moreira, FGB .
PHYSICAL REVIEW E, 2003, 67 (02) :4