What a twist: structural biology of the SARS-CoV-2 helicase nsp13

被引:0
|
作者
Horrell, Sam [1 ]
Martino, Sam [2 ]
Kirsten, Ferdinand [3 ]
Berta, Denes [2 ]
Santoni, Gianluca [4 ]
Thorn, Andrea [3 ]
机构
[1] Diamond Light Source, Harwell Sci & Innovat Campus, Didcot, England
[2] UCL, Dept Phys & Astron, London, England
[3] Univ Hamburg, Inst Nanostruktur & Festkorperphys, Hamburg, Germany
[4] European Synchrotron Radiat Facil, Grenoble, France
关键词
SARS-CoV-2; COVID-19; helicase; structural biology; structure based drug design; SARS CORONAVIRUS HELICASE; SINGLE-STRANDED-DNA; CRYSTAL-STRUCTURE; ARTERIVIRUS HELICASE; ENZYMATIC-ACTIVITIES; ZINC-FINGERS; RNA; REPLICATION; PROTEINS; SEQUENCE;
D O I
10.1080/0889311X.2024.2309494
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
SARS-CoV-2 nsp13 is a multifunctional helicase from helicase superfamily 1B. It unwinds the viral RNA genome for replication and is thought to play a role in 5' mRNA capping to produce mature mRNA using its triphosphatase activity. The sequence and structure are highly conserved in nidovirales and the protein is essential to the viral infection cycle, acting as a standalone enzyme and in conjunction with other SARS-CoV-2 proteins, making SARS-CoV-2 helicase a promising target for structure-based drug design. By inhibiting helicase activity, phosphatase activity, or its interaction with the RNA-dependent RNA polymerase we could interrupt viral replication. A total of 72 structures of SARS-CoV-2 nsp13 have been published in the protein databank (PDB) to date, 56 monomers and 16 as part of a complex. The structure of nsp13 is made up of five conserved folds, from N- to C-terminus, a zinc-binding domain, stalk domain, beta barrel domain 1B, RecA-like subdomain 1A, and RecA-like subdomain 1B. This review summarizes the current structural and functional knowledge surrounding SARS-CoV-2 nsp13 and related helicases, as well as the structure-based drug design efforts to date, and other complementary knowledge to provide downstream users of SARS-CoV-2 structures with a solid foundation to better inform their work.
引用
收藏
页码:202 / 227
页数:26
相关论文
共 50 条
  • [31] SARS-CoV-2 nsp13 Restricts Episomal DNA Transcription without Affecting Chromosomal DNA
    Li, Aixin
    Zhang, Bei
    Zhao, Kaitao
    Yin, Zhinang
    Teng, Yan
    Zhang, Lu
    Xu, Zaichao
    Liang, Kaiwei
    Cheng, Xiaoming
    Xia, Yuchen
    JOURNAL OF VIROLOGY, 2023, 97 (07)
  • [32] Structural biology of SARS-CoV-2 leader protein (nsp1)
    Kaub, Johannes
    Akinselure, Toyin
    von Soosten, Lea
    Santoni, Gianluca
    Thorn, Andrea
    CRYSTALLOGRAPHY REVIEWS, 2024, 30 (02) : 118 - 134
  • [33] Targeting SARS-CoV-2 nsp13 Helicase and Assessment of Druggability Pockets: Identification of Two Potent Inhibitors by a Multi-Site In Silico Drug Repurposing Approach
    Romeo, Isabella
    Ambrosio, Francesca Alessandra
    Costa, Giosue
    Corona, Angela
    Alkhatib, Mohammad
    Salpini, Romina
    Lemme, Saverio
    Vergni, Davide
    Svicher, Valentina
    Santoro, Maria Mercedes
    Tramontano, Enzo
    Ceccherini-Silberstein, Francesca
    Artese, Anna
    Alcaro, Stefano
    MOLECULES, 2022, 27 (21):
  • [34] SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists
    Yuen, Chun-Kit
    Lam, Joy-Yan
    Wong, Wan-Man
    Mak, Long-Fung
    Wang, Xiaohui
    Chu, Hin
    Cai, Jian-Piao
    Jin, Dong-Yan
    To, Kelvin Kai-Wang
    Chan, Jasper Fuk-Woo
    Yuen, Kwok-Yung
    Kok, Kin-Hang
    EMERGING MICROBES & INFECTIONS, 2020, 9 (01) : 1418 - 1428
  • [35] Activity and inhibition of the SARS-CoV-2 Omicron nsp13 R392C variant using RNA duplex unwinding assays
    Inniss, Nicole L.
    Rzhetskaya, Margarita
    Ling-Hu, Ted
    Lorenzo-Redondo, Ramon
    Bachta, Kelly E.
    Satchell, Karla J. F.
    Hultquist, Judd F.
    SLAS DISCOVERY, 2024, 29 (03)
  • [36] Structural biology of SARS-CoV-2 nucleocapsid
    Kippes, Oliver
    Thorn, Andrea
    Santoni, Gianluca
    CRYSTALLOGRAPHY REVIEWS, 2022, 28 (01) : 21 - 38
  • [37] Amino acid substitutions in NSP6 and NSP13 of SARS-CoV-2 contribute to superior virus growth at low temperatures
    Furusawa, Yuri
    Kiso, Maki
    Uraki, Ryuta
    Sakai-Tagawa, Yuko
    Nagai, Hiroyuki
    Koga, Michiko
    Kashima, Yukie
    Hojo, Masayuki
    Iwamoto, Noriko
    Iwatsuki-Horimoto, Kiyoko
    Ohmagari, Norio
    Suzuki, Yutaka
    Yotsuyanagi, Hiroshi
    Halfmann, Peter J.
    Kamitani, Wataru
    Yamayoshi, Seiya
    Kawaoka, Yoshihiro
    JOURNAL OF VIROLOGY, 2025, 99 (03)
  • [38] SARS-CoV-2 Nucleocapsid Protein Has DNA-Melting and Strand-Annealing Activities With Different Properties From SARS-CoV-2 Nsp13
    Zhang, Bo
    Xie, Yan
    Lan, Zhaoling
    Li, Dayu
    Tian, Junjie
    Zhang, Qintao
    Tian, Hongji
    Yang, Jiali
    Zhou, Xinnan
    Qiu, Shuyi
    Lu, Keyu
    Liu, Yang
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [39] Identification of Potential Inhibitors of the SARS-CoV-2 NSP13 Helicase via Structure-Based Ligand Design, Molecular Docking and Nonequilibrium Alchemical Simulations
    Di Paco, Giorgio
    Macchiagodena, Marina
    Procacci, Piero
    CHEMMEDCHEM, 2024, 19 (10)
  • [40] Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13
    Lee, Na-Ra
    Kwon, Hyun-Mi
    Park, Kkothanahreum
    Oh, Sangtaek
    Jeong, Yong-Joo
    Kim, Dong-Eun
    NUCLEIC ACIDS RESEARCH, 2010, 38 (21) : 7626 - 7636