Structural stability for scalar reaction-diffusion equations

被引:0
|
作者
Lee, Jihoon [1 ]
Pires, Leonardo [2 ]
机构
[1] Chonnam Natl Univ, Gwangju, South Korea
[2] Univ Estadual Ponta Grossa, Ponta Grossa, Parana, Brazil
关键词
Morse-Smale semiflows; rate of convergence of attractors; structural stability; invariant manifolds; Gromov-Hausdorff distance; ATTRACTORS; CONVERGENCE; SYSTEMS;
D O I
10.14232/ejqtde.2023.1.54
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the structural stability for a family of scalar reaction-diffusion equations. Our arguments consist of using invariant manifold theorem to reduce the problem to a finite dimension and then, we use the structural stability of Morse-Smale flows in a finite dimension to obtain the corresponding result in infinite dimension. As a consequence, we obtain the optimal rate of convergence of the attractors and estimate the Gromov-Hausdorff distance of the attractors using continuous e-isometries.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] Reaction-diffusion equations and learning
    Shah, J
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2002, 13 (1-2) : 82 - 93
  • [33] COUPLED REACTION-DIFFUSION EQUATIONS
    FREIDLIN, M
    ANNALS OF PROBABILITY, 1991, 19 (01): : 29 - 57
  • [34] The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations. Initial data with exponential decay rates or compact support
    Leach, JA
    Needham, DJ
    Kay, AL
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2003, 56 : 217 - 249
  • [35] Reaction-Diffusion Equations in Immunology
    Bocharov, G. A.
    Volpert, V. A.
    Tasevich, A. L.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (12) : 1967 - 1976
  • [36] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [37] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [38] ON THE SOLUTION OF REACTION-DIFFUSION EQUATIONS
    HILL, JM
    IMA JOURNAL OF APPLIED MATHEMATICS, 1981, 27 (02) : 177 - 194
  • [39] STABILITY OF REACTION-DIFFUSION FRONTS
    ZHANG, ZQ
    FALLE, SAEG
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1994, 446 (1928): : 517 - 528
  • [40] Large-time solutions of a class of scalar, nonlinear hyperbolic reaction-diffusion equations
    Leach, J. A.
    Bassom, Andrew P.
    JOURNAL OF ENGINEERING MATHEMATICS, 2021, 130 (01)