Enhancing brain tumor classification with transfer learning: Leveraging DenseNet121 for accurate and efficient detection

被引:1
|
作者
Raza, Asif [1 ]
Alshehri, Mohammed S. [2 ]
Almakdi, Sultan [2 ]
Siddique, Ali Akbar [3 ]
Alsulami, Mohammad [2 ]
Alhaisoni, Majed [4 ]
机构
[1] Sir Syed Univ Engn & Technol, Dept Comp Sci, Karachi, Pakistan
[2] Najran Univ, Coll Comp Sci & Informat Syst, Dept Comp Sci, Najran, Saudi Arabia
[3] Sir Syed Univ Engn & Technol, Dept Telecommun Engn, Karachi, Pakistan
[4] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Comp Sci Dept, Riyadh, Saudi Arabia
关键词
brain tumor classification; deep learning; DenseNet-121; Inception V3; transfer learning;
D O I
10.1002/ima.22957
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain tumors pose a serious neurological threat to human life, necessitating improved detection and classification methods. Deep transfer learning (TL), in particular in key tumor categories such as meningioma, pituitary, glioma, and instances without tumors, has shown to be a new and successful method for tumor identification and classification. In this work, the efficacy of two pre-trained TL methods-Inceptionv3 and DenseNet121-was examined for correctly classifying certain kinds of brain tumors. The experimental findings show that the DenseNet-121 model, using the TL approach, performed better than other models in terms of accuracy for the identification and classification of brain tumors. The classification test results were impressive, with DenseNet-121 reaching an astounding 99.95% accuracy and precision, recall, and F1-measure scores of 97.7%, 92.1%, and 94.8%, respectively. DenseNet-121 demonstrated 100% and 92.42% training and validation accuracies, respectively, highlighting its potential as an effective and precise diagnosis tool for brain malignancies.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Interactive Effect of Learning Rate and Batch Size to Implement Transfer Learning for Brain Tumor Classification
    Usmani, Irfan Ahmed
    Qadri, Muhammad Tahir
    Zia, Razia
    Alrayes, Fatma S. S.
    Saidani, Oumaima
    Dashtipour, Kia
    ELECTRONICS, 2023, 12 (04)
  • [22] Enhancing EfficientNetv2 with global and efficient channel attention mechanisms for accurate MRI-Based brain tumor classification
    Pacal, Ishak
    Celik, Omer
    Bayram, Bilal
    Cunha, Antonio
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (08): : 11187 - 11212
  • [23] A Transfer Learning-Based Approach for Brain Tumor Classification
    Bibi, Nadia
    Wahid, Fazli
    Ma, Yingliang
    Ali, Sikandar
    Abbasi, Irshad Ahmed
    Alkhayyat, Ahmed
    Khyber
    IEEE ACCESS, 2024, 12 : 111218 - 111238
  • [24] A transfer learning-based brain tumor classification using magnetic resonance images
    Rajput, Ishwari Singh
    Gupta, Aditya
    Jain, Vibha
    Tyagi, Sonam
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 20487 - 20506
  • [25] Advanced Deep Learning Approaches for Accurate Brain Tumor Classification in Medical Imaging
    Mahmoud, Amena
    Awad, Nancy Awadallah
    Alsubaie, Najah
    Ansarullah, Syed Immamul
    Alqahtani, Mohammed S.
    Abbas, Mohamed
    Usman, Mohammed
    Soufiene, Ben Othman
    Saber, Abeer
    SYMMETRY-BASEL, 2023, 15 (03):
  • [26] Efficient framework for brain tumor detection using different deep learning techniques
    Taher, Fatma
    Shoaib, Mohamed R.
    Emara, Heba M.
    Abdelwahab, Khaled M.
    Abd El-Samie, Fathi E.
    Haweel, Mohammad T.
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [27] A transfer learning-based brain tumor classification using magnetic resonance images
    Ishwari Singh Rajput
    Aditya Gupta
    Vibha Jain
    Sonam Tyagi
    Multimedia Tools and Applications, 2024, 83 : 20487 - 20506
  • [28] Robust Deep Learning Approach for Brain Tumor Classification and Detection
    Bindu, J. Hima
    Meghana, Appidi
    Kommula, Sravani
    Varma, Jagu Abhishek
    ADVANCES IN SIGNAL PROCESSING AND COMMUNICATION ENGINEERING, ICASPACE 2021, 2022, 929 : 427 - 437
  • [29] Deep learning based brain tumor classification and detection system
    Ari, Ali
    Hanbay, Davut
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2018, 26 (05) : 2275 - 2286
  • [30] A Transfer Learning-Based Active Learning Framework for Brain Tumor Classification
    Hao, Ruqian
    Namdar, Khashayar
    Liu, Lin
    Khalvati, Farzad
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4