An unconditionally energy stable linear scheme for Poisson-Nernst-Planck equations

被引:4
作者
Qiao, Tian [1 ]
Qiao, Zhonghua [2 ]
Sun, Shuyu [1 ]
Zhou, Shenggao [3 ,4 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div PSE, Computat Transport Phenomena Lab CTPL, Thuwal 23955-6900, Saudi Arabia
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, CMA Shanghai, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai Ctr Appl Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Poisson-Nernst-Planck equations; Mass conservation; Energy stability; Electric double layer; FINITE-DIFFERENCE SCHEME; CONVERGENCE ANALYSIS; NUMERICAL-METHODS; MODEL;
D O I
10.1016/j.cam.2024.115759
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a linear, unconditionally energy -stable scheme for the Poisson-Nernst- Planck (PNP) equations. Based on a gradient -flow formulation of the PNP equations, the energy factorization approach is applied to linearize the logarithm function at the previous time step, resulting in a linear semi -implicit scheme. Numerical analysis is conducted to illustrate that the proposed fully discrete scheme has desired properties at a discrete level, such as unconditional unique solvability, mass conservation, and energy dissipation. Numerical simulations verify that the proposed scheme, as expected, is first -order accurate in time and second -order accurate in space. Further numerical tests confirm that the proposed scheme can indeed preserve the desired properties. Applications of our numerical scheme to the simulations of electrolyte solutions demonstrate that, as a linear energy stable scheme of efficiency, it will be promising in simulating complicated transport phenomena of charged systems.
引用
收藏
页数:10
相关论文
共 50 条
[11]   A study of the numerical stability of an ImEx scheme with application to the Poisson-Nernst-Planck equations [J].
Pugh, M. C. ;
Yan, David ;
Dawson, F. P. .
APPLIED NUMERICAL MATHEMATICS, 2021, 163 :239-253
[12]   Convergence and superconvergence analysis for a mass conservative, energy stable and linearized BDF2 scheme of the Poisson-Nernst-Planck equations [J].
Li, Minghao ;
Shi, Dongyang ;
Li, Zhenzhen .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
[13]   Entropy method for generalized Poisson-Nernst-Planck equations [J].
Gonzalez Granada, Jose Rodrigo ;
Kovtunenko, Victor A. .
ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) :603-619
[14]   Second-order, positive, and unconditional energy dissipative scheme for modified Poisson-Nernst-Planck equations [J].
Ding, Jie ;
Zhou, Shenggao .
JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 510
[15]   A dynamic mass transport method for Poisson-Nernst-Planck equations [J].
Liu, Hailiang ;
Maimaitiyiming, Wumaier .
JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
[16]   A WASSERSTEIN GRADIENT FLOW APPROACH TO POISSON-NERNST-PLANCK EQUATIONS [J].
Kinderlehrer, David ;
Monsaingeon, Leonard ;
Xu, Xiang .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (01) :137-164
[17]   A Positivity Preserving and Free Energy Dissipative Difference Scheme for the Poisson-Nernst-Planck System [J].
He, Dongdong ;
Pan, Kejia ;
Yue, Xiaoqiang .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) :436-458
[18]   First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations [J].
Schmuck, Markus .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (04) :304-319
[19]   HOMOGENIZATION OF THE POISSON-NERNST-PLANCK EQUATIONS FOR ION TRANSPORT IN CHARGED POROUS MEDIA [J].
Schmuck, Markus ;
Bazant, Martin Z. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (03) :1369-1401
[20]   BOUND/POSITIVITY PRESERVING AND ENERGY STABLE SCALAR AUXILIARY VARIABLE SCHEMES FOR DISSIPATIVE SYSTEMS: APPLICATIONS TO KELLER-SEGEL AND POISSON-NERNST-PLANCK EQUATIONS [J].
Huang, Fukeng ;
Shen, Jie .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (03) :A1832-A1857