An unconditionally energy stable linear scheme for Poisson-Nernst-Planck equations

被引:3
|
作者
Qiao, Tian [1 ]
Qiao, Zhonghua [2 ]
Sun, Shuyu [1 ]
Zhou, Shenggao [3 ,4 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div PSE, Computat Transport Phenomena Lab CTPL, Thuwal 23955-6900, Saudi Arabia
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, CMA Shanghai, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai Ctr Appl Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Poisson-Nernst-Planck equations; Mass conservation; Energy stability; Electric double layer; FINITE-DIFFERENCE SCHEME; CONVERGENCE ANALYSIS; NUMERICAL-METHODS; MODEL;
D O I
10.1016/j.cam.2024.115759
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a linear, unconditionally energy -stable scheme for the Poisson-Nernst- Planck (PNP) equations. Based on a gradient -flow formulation of the PNP equations, the energy factorization approach is applied to linearize the logarithm function at the previous time step, resulting in a linear semi -implicit scheme. Numerical analysis is conducted to illustrate that the proposed fully discrete scheme has desired properties at a discrete level, such as unconditional unique solvability, mass conservation, and energy dissipation. Numerical simulations verify that the proposed scheme, as expected, is first -order accurate in time and second -order accurate in space. Further numerical tests confirm that the proposed scheme can indeed preserve the desired properties. Applications of our numerical scheme to the simulations of electrolyte solutions demonstrate that, as a linear energy stable scheme of efficiency, it will be promising in simulating complicated transport phenomena of charged systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Unconditionally positivity preserving and energy dissipative schemes for Poisson-Nernst-Planck equations
    Shen, Jie
    Xu, Jie
    NUMERISCHE MATHEMATIK, 2021, 148 (03) : 671 - 697
  • [2] A conservative finite difference scheme for Poisson-Nernst-Planck equations
    Flavell, Allen
    Machen, Michael
    Eisenberg, Bob
    Kabre, Julienne
    Liu, Chun
    Li, Xiaofan
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (01) : 235 - 249
  • [3] Exact solution of the Poisson-Nernst-Planck equations in the linear regime
    Golovnev, A.
    Trimper, S.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (11):
  • [4] A positivity-preserving, linear, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck (PNP) system
    Dong, Lixiu
    He, Dongdong
    Qin, Yuzhe
    Zhang, Zhengru
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 444
  • [5] An energy-preserving discretization for the Poisson-Nernst-Planck equations
    Flavell, Allen
    Kabre, Julienne
    Li, Xiaofan
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2017, 16 (02) : 431 - 441
  • [6] A multigrid method for the Poisson-Nernst-Planck equations
    Mathur, Sanjay R.
    Murthy, Jayathi Y.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (17-18) : 4031 - 4039
  • [7] A POSITIVITY-PRESERVING, ENERGY STABLE AND CONVERGENT NUMERICAL SCHEME FOR THE POISSON-NERNST-PLANCK SYSTEM
    Liu, Chun
    Wang, Cheng
    Wise, Steven M.
    Yue, Xingye
    Zhou, Shenggao
    MATHEMATICS OF COMPUTATION, 2021, 90 (331) : 2071 - 2106
  • [8] An energy preserving finite difference scheme for the Poisson-Nernst-Planck system
    He, Dongdong
    Pan, Kejia
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 287 : 214 - 223
  • [9] A study of the numerical stability of an ImEx scheme with application to the Poisson-Nernst-Planck equations
    Pugh, M. C.
    Yan, David
    Dawson, F. P.
    APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 239 - 253
  • [10] Steady state solution of the Poisson-Nernst-Planck equations
    Golovnev, A.
    Trimper, S.
    PHYSICS LETTERS A, 2010, 374 (28) : 2886 - 2889