Changes in aridity and its impact on agricultural lands in East Asia for 1.5 and 2.0 °C temperature rise scenarios

被引:2
|
作者
Ziarh, Ghaith Falah [1 ,2 ]
Chung, Eun Sung [3 ]
Hamed, Mohammed Magdy [4 ,5 ]
Hassan, Maan S. [1 ]
Shahid, Shamsuddin [5 ]
机构
[1] Univ Technol Iraq, Civil Engn Dept, Alsinaa St, Baghdad 10066, Iraq
[2] Univ Warith Al Anbiyaa, Coll Engn, Karbala, Iraq
[3] Seoul Natl Univ Sci & Technol, Fac Civil Engn, 232 Gongneung Ro, Seoul 01811, South Korea
[4] Arab Acad Sci Technol & Maritime Transport AASTMT, Coll Engn & Technol, Construct & Bldg Engn Dept, B 2401 Smart Village, Giza 12577, Egypt
[5] Univ Teknol Malaysia UTM, Fac Civil Engn, Dept Water & Environm Engn, Skudia 81310, Johor, Malaysia
关键词
Evapotranspiration; Aridity; Climate change; Impacts on agriculture; Shared socioeconomic scenarios; REFERENCE EVAPOTRANSPIRATION; SPATIOTEMPORAL TRENDS; GLOBAL ARIDITY; CLIMATE-CHANGE; PRECIPITATION; MONSOON; INDEX; BASIN;
D O I
10.1016/j.atmosres.2023.106920
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study aimed to assess the changes in aridity in East Asia (EA) over the next 80 years for the restriction of global warming based on Paris Agreement goals. Eight General Circulation Models (GCMs) that provide simulations for 1.5 and 2.0 degrees C global warming scenarios were used for this purpose. The Penman-Monteith Equation was utilized to calculate potential evapotranspiration (PET). The land-use projections data was used to identify the agricultural lands that aridity could impact. The results showed a likely increase in rainfall and PET in EA over the next 80 years. However, the spatial variability of the relative increase in rainfall and PET would cause an aridity shift in 1.2-9.7% of the total land area. Though most of the area would experience a transition to a wetter climate, nearly 2% of the land would experience a transition to a drier climate. It would cause nearly 4.4 and 6.2 thousand km2 of agricultural land to be converted from semi-arid to arid and 31.1 and 42.2 thousand km2 of land from sub-humid to semi-arid in the early period for 1.5 and 2.0 degrees C temperature rise scenarios, respectively. This indicates nearly one and a half times more expansion of aridity on agricultural land in the early period for only a 0.5 degrees C increase in temperature. A decrease in aridity in the far future for both scenarios would cause a reduction of total arid lands and, thus, its impacts on agriculture. Overall, the study revealed a possible reduction of aridity in EA in the long run if the Paris Agreement is enforced and global warming is limited.
引用
收藏
页数:10
相关论文
共 23 条
  • [1] Spatiotemporal variations of aridity index over the Belt and Road region under the 1.5°C and 2.0°C warming scenarios
    Zhou, Jian
    Jiang, Tong
    Wang, Yanjun
    Su, Buda
    Tao, Hui
    Qin, Jiancheng
    Zhai, Jianqing
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2020, 30 (01) : 37 - 52
  • [2] Changes in Extreme Low Temperature Events over Northern China under 1.5 °C and 2.0 °C Warmer Future Scenarios
    Hu, Weiwei
    Zhang, Guwei
    Zeng, Gang
    Li, Zhongxian
    ATMOSPHERE, 2019, 10 (01)
  • [3] Heat Stress Changes over East Asia under 1.5° and 2.0°C Global Warming Targets
    Lee, Sang-Min
    Min, Seung-Ki
    JOURNAL OF CLIMATE, 2018, 31 (07) : 2819 - 2831
  • [4] Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming
    Li, Zhi
    Fang, Gonghuan
    Chen, Yaning
    Duan, Weili
    Mukanov, Yerbolat
    AGRICULTURAL WATER MANAGEMENT, 2020, 231 (231)
  • [5] A substantial rise in the area and population affected by dryness in South Asia under 1.5 C, 2.0 C and 2.5 C warmer worlds
    Aadhar, Saran
    Mishra, Vimal
    ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (11):
  • [6] Projected changes in summer water vapor transport over East Asia under the 1.5°C and 2.0°C global warming targets
    Xu Zhiqing
    Fan Ke
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2019, 12 (02) : 124 - 130
  • [7] Projected Changes in the Asian-Australian Monsoon Region in 1.5°C and 2.0°C Global-Warming Scenarios
    Chevuturi, Amulya
    Klingaman, Nicholas P.
    Turner, Andrew G.
    Hannah, Shaun
    EARTHS FUTURE, 2018, 6 (03) : 339 - 358
  • [8] Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers
    Kraaijenbrink, P. D. A.
    Bierkens, M. F. P.
    Lutz, A. F.
    Immerzeel, W. W.
    NATURE, 2017, 549 (7671) : 257 - +
  • [9] Analyzing the Contribution of Moisture Sources to Precipitation Changes Under 1.5/2.0°C Stabilized Warming Scenarios: A Study Over Northwest China
    Zhang, Mi
    Wang, Shuyu
    Wang, Shuangshuang
    Zhou, Weidan
    Tang, Jianping
    Luo, Shuangyi
    Niu, Xiaorui
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2024, 129 (12)
  • [10] More robust changes in the East Asian winter monsoon from 1.5 to 2.0°C global warming targets
    Miao, Jiapeng
    Wang, Tao
    Chen, Dong
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2020, 40 (11) : 4731 - 4749