MACI: A machine learning-based approach to identify drug classes of antibiotic resistance genes from metagenomic data

被引:2
作者
Chowdhury, Rohit Roy [1 ]
Dhar, Jesmita [2 ]
Robinson, Stephy Mol [2 ]
Lahiri, Abhishake [2 ,3 ]
Basak, Kausik [2 ]
Paul, Sandip [2 ]
Banerjee, Rachana [2 ]
机构
[1] JIS Univ, JIS Inst Adv Studies & Res Kolkata, Ctr Data Sci, Kolkata, WB, India
[2] JIS Univ, JIS Inst Adv Studies & Res, Ctr Hlth Sci & Technol, Kolkata, WB, India
[3] CSIR Indian Inst Chem Biol, Div Struct Biol & Bioinformat, Kolkata, WB, India
关键词
Antibiotic resistance gene; Drug class; Machine learning; Gene sequencing; Taxonomic clades; Metagenomic reads; ANTIMICROBIAL RESISTANCE; BETA-LACTAMASE; CD-HIT; MECHANISMS; RESISTOME; BACTERIA; PROTEIN;
D O I
10.1016/j.compbiomed.2023.107629
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Novel methodologies are now essential for identification of antibiotic resistant pathogens in order to resist them. Here, we are presenting a model, MACI (Machine learning-based Antibiotic resistance gene-specific drug Class Identification) that can take metagenomic fragments as input and predict the drug class of antibiotic resistant genes. In our study, we trained a model using the Comprehensive Antibiotic Resistance Database, containing 5138 representative sequences across 134 drug classes. Among these classes, 23 dominated, contributing 85% of the sequence data. The model achieved an average precision of 0.8389 +/- 0.0747 and recall of 0.8197 +/- 0.0782 for these 23 drug classes. Additionally, it exhibited higher performance (precision and recall: 0.8817 +/- 0.0540 and 0.8620 +/- 0.0493) for predicting multidrug resistant classes compared to single drug resistant categories (0.7923 +/- 0.0669 and 0.7737 +/- 0.0794). The model also showed promising results when tested on an independent data. We then analysed these 23 drug classes to identify class-specific overlapping nucleotide patterns. Five significant drug classes, viz. "Carbapenem; cephalosporin; penam", "cephalosporin", "cephamycin", "cephalosporin; monobactam; penam; penem", and "fluoroquinolone" were identified, and their patterns aligned with the functional domains of antibiotic resistance genes. These class-specific patterns play a pivotal role in rapidly identifying drug classes with antibiotic resistance genes. Further analysis revealed that bacterial species containing these five drug classes are associated with well-known multidrug resistance properties.
引用
收藏
页数:15
相关论文
共 68 条
[21]   Antimicrobial Resistance Prediction in PATRIC and RAST [J].
Davis, James J. ;
Boisvert, Sebastien ;
Brettin, Thomas ;
Kenyon, Ronald W. ;
Mao, Chunhong ;
Olson, Robert ;
Overbeek, Ross ;
Santerre, John ;
Shukla, Maulik ;
Wattam, Alice R. ;
Will, Rebecca ;
Xia, Fangfang ;
Stevens, Rick .
SCIENTIFIC REPORTS, 2016, 6
[22]   ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins [J].
de Castro, Edouard ;
Sigrist, Christian J. A. ;
Gattiker, Alexandre ;
Bulliard, Virginie ;
Langendijk-Genevaux, Petra S. ;
Gasteiger, Elisabeth ;
Bairoch, Amos ;
Hulo, Nicolas .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W362-W365
[23]   Antibiotic Resistance by Enzyme Inactivation: From Mechanisms to Solutions [J].
De Pascale, Gianfranco ;
Wright, Gerard D. .
CHEMBIOCHEM, 2010, 11 (10) :1325-1334
[24]   Outer membrane permeability and antibiotic resistance [J].
Delcour, Anne H. .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2009, 1794 (05) :808-816
[25]   Metagenomics: The Next Culture-Independent Game Changer [J].
Forbes, Jessica D. ;
Knox, Natalie C. ;
Ronholm, Jennifer ;
Pagotto, Franco ;
Reimer, Aleisha .
FRONTIERS IN MICROBIOLOGY, 2017, 8
[26]   The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens [J].
Forsberg, Kevin J. ;
Reyes, Alejandro ;
Wang, Bin ;
Selleck, Elizabeth M. ;
Sommer, Morten O. A. ;
Dantas, Gautam .
SCIENCE, 2012, 337 (6098) :1107-1111
[27]   Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis [J].
Gandhi, Neel R. ;
Nunn, Paul ;
Dheda, Keertan ;
Schaaf, H. Simon ;
Zignol, Matteo ;
van Soolingen, Dick ;
Jensen, Paul ;
Bayona, Jaime .
LANCET, 2010, 375 (9728) :1830-1843
[28]  
Haykin S., 2009, Neural networks and learning machines, V3rd
[29]   Dissemination of the mcr-1 colistin resistance gene [J].
Hu, Yongfei ;
Liu, Fei ;
Lin, Ivan Y. C. ;
Gao, George F. ;
Zhu, Baoli .
LANCET INFECTIOUS DISEASES, 2016, 16 (02) :146-147
[30]   CD-HIT Suite: a web server for clustering and comparing biological sequences [J].
Huang, Ying ;
Niu, Beifang ;
Gao, Ying ;
Fu, Limin ;
Li, Weizhong .
BIOINFORMATICS, 2010, 26 (05) :680-682