MACI: A machine learning-based approach to identify drug classes of antibiotic resistance genes from metagenomic data

被引:2
作者
Chowdhury, Rohit Roy [1 ]
Dhar, Jesmita [2 ]
Robinson, Stephy Mol [2 ]
Lahiri, Abhishake [2 ,3 ]
Basak, Kausik [2 ]
Paul, Sandip [2 ]
Banerjee, Rachana [2 ]
机构
[1] JIS Univ, JIS Inst Adv Studies & Res Kolkata, Ctr Data Sci, Kolkata, WB, India
[2] JIS Univ, JIS Inst Adv Studies & Res, Ctr Hlth Sci & Technol, Kolkata, WB, India
[3] CSIR Indian Inst Chem Biol, Div Struct Biol & Bioinformat, Kolkata, WB, India
关键词
Antibiotic resistance gene; Drug class; Machine learning; Gene sequencing; Taxonomic clades; Metagenomic reads; ANTIMICROBIAL RESISTANCE; BETA-LACTAMASE; CD-HIT; MECHANISMS; RESISTOME; BACTERIA; PROTEIN;
D O I
10.1016/j.compbiomed.2023.107629
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Novel methodologies are now essential for identification of antibiotic resistant pathogens in order to resist them. Here, we are presenting a model, MACI (Machine learning-based Antibiotic resistance gene-specific drug Class Identification) that can take metagenomic fragments as input and predict the drug class of antibiotic resistant genes. In our study, we trained a model using the Comprehensive Antibiotic Resistance Database, containing 5138 representative sequences across 134 drug classes. Among these classes, 23 dominated, contributing 85% of the sequence data. The model achieved an average precision of 0.8389 +/- 0.0747 and recall of 0.8197 +/- 0.0782 for these 23 drug classes. Additionally, it exhibited higher performance (precision and recall: 0.8817 +/- 0.0540 and 0.8620 +/- 0.0493) for predicting multidrug resistant classes compared to single drug resistant categories (0.7923 +/- 0.0669 and 0.7737 +/- 0.0794). The model also showed promising results when tested on an independent data. We then analysed these 23 drug classes to identify class-specific overlapping nucleotide patterns. Five significant drug classes, viz. "Carbapenem; cephalosporin; penam", "cephalosporin", "cephamycin", "cephalosporin; monobactam; penam; penem", and "fluoroquinolone" were identified, and their patterns aligned with the functional domains of antibiotic resistance genes. These class-specific patterns play a pivotal role in rapidly identifying drug classes with antibiotic resistance genes. Further analysis revealed that bacterial species containing these five drug classes are associated with well-known multidrug resistance properties.
引用
收藏
页数:15
相关论文
共 68 条
[1]  
Agarap A F., 2018, Deep learning using rectified linear units (relu)
[2]   CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database [J].
Alcock, Brian P. ;
Raphenya, Amogelang R. ;
Lau, Tammy T. Y. ;
Tsang, Kara K. ;
Bouchard, Megane ;
Edalatmand, Arman ;
Huynh, William ;
Nguyen, Anna-Lisa, V ;
Cheng, Annie A. ;
Liu, Sihan ;
Min, Sally Y. ;
Miroshnichenko, Anatoly ;
Tran, Hiu-Ki ;
Werfalli, Rafik E. ;
Nasir, Jalees A. ;
Oloni, Martins ;
Speicher, David J. ;
Florescu, Alexandra ;
Singh, Bhavya ;
Faltyn, Mateusz ;
Hernandez-Koutoucheva, Anastasia ;
Sharma, Arjun N. ;
Bordeleau, Emily ;
Pawlowski, Andrew C. ;
Zubyk, Haley L. ;
Dooley, Damion ;
Griffiths, Emma ;
Maguire, Finlay ;
Winsor, Geoff L. ;
Beiko, Robert G. ;
Brinkman, Fiona S. L. ;
Hsiao, William W. L. ;
Domselaar, Gary, V ;
McArthur, Andrew G. .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D517-D525
[4]   DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data [J].
Arango-Argoty, Gustavo ;
Garner, Emily ;
Prudent, Amy ;
Heath, Lenwood S. ;
Vikesland, Peter ;
Zhang, Liqing .
MICROBIOME, 2018, 6
[5]   Environmental factors influencing the development and spread of antibiotic resistance [J].
Bengtsson-Palme, Johan ;
Kristiansson, Erik ;
Larsson, D. G. Joakim .
FEMS MICROBIOLOGY REVIEWS, 2018, 42 (01) :68-80
[6]   Identification and reconstruction of novel antibiotic resistance genes from metagenomes [J].
Berglund, Fanny ;
Osterlund, Tobias ;
Boulund, Fredrik ;
Marathe, Nachiket P. ;
Larsson, D. G. Joakim ;
Kristiansson, Erik .
MICROBIOME, 2019, 7 (1)
[7]   Molecular mechanisms of antibiotic resistance [J].
Blair, Jessica M. A. ;
Webber, Mark A. ;
Baylay, Alison J. ;
Ogbolu, David O. ;
Piddock, Laura J. V. .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (01) :42-51
[8]   Sequencing-based methods and resources to study antimicrobial resistance [J].
Boolchandani, Manish ;
D'Souza, Alaric W. ;
Dantas, Gautam .
NATURE REVIEWS GENETICS, 2019, 20 (06) :356-370
[9]   Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis [J].
Bradley, Phelim ;
Gordon, N. Claire ;
Walker, Timothy M. ;
Dunn, Laura ;
Heys, Simon ;
Huang, Bill ;
Earle, Sarah ;
Pankhurst, Louise J. ;
Anson, Luke ;
de Cesare, Mariateresa ;
Piazza, Paolo ;
Votintseva, Antonina A. ;
Golubchik, Tanya ;
Wilson, Daniel J. ;
Wyllie, David H. ;
Diel, Roland ;
Niemann, Stefan ;
Feuerriegel, Silke ;
Kohl, Thomas A. ;
Ismail, Nazir ;
Omar, Shaheed V. ;
Smith, E. Grace ;
Buck, David ;
McVean, Gil ;
Walker, A. Sarah ;
Peto, Tim E. A. ;
Crook, Derrick W. ;
Iqbal, Zamin .
NATURE COMMUNICATIONS, 2015, 6
[10]   A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility [J].
Brogan, David M. ;
Mossialos, Elias .
GLOBALIZATION AND HEALTH, 2016, 12