Probability of default estimation in credit risk using mixture cure models

被引:2
作者
Pelaez, Rebeca [1 ]
Van Keilegom, Ingrid [2 ]
Cao, Ricardo [3 ]
Vilar, Juan M. [3 ]
机构
[1] Univ Carlos III Madrid, Dept Stat, Madrid, Spain
[2] Katholieke Univ Leuven, Res Ctr Operat Res & Stat ORSTAT, Leuven, Belgium
[3] Univ A Coruna, Dept Math, Res Grp MODES, CITIC, La Coruna, Spain
基金
欧洲研究理事会;
关键词
Censored data; Survival analysis; Nonparametric estimation; Kernel method; BOOTSTRAP BANDWIDTH SELECTION; SURVIVAL ANALYSIS; NONPARAMETRIC-ESTIMATION;
D O I
10.1016/j.csda.2023.107853
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An estimator of the probability of default (PD) in credit risk is proposed. It is derived from a nonparametric conditional survival function estimator based on cure models. Asymptotic expressions for the bias and the variance, as well as the asymptotic normality of the proposed estimator are presented. A simulation study shows the performance of the nonparametric estimator compared with Beran's PD estimator and other semiparametric methods. Finally, an empirical study based on modified real data illustrates the practical behaviour.(c) 2023 Published by Elsevier B.V.
引用
收藏
页数:23
相关论文
共 50 条
[41]   Mixture cure rate models with neural network estimated nonparametric components [J].
Yujing Xie ;
Zhangsheng Yu .
Computational Statistics, 2021, 36 :2467-2489
[42]   A nonparametric estimation method for the multivariate mixture models [J].
Lu, Nan ;
Wang, Lihong .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (17) :3727-3742
[43]   Application of Mixture and Non-mixture Cure Models in Survival Analysis of Patients With COVID-19 [J].
Kamalzade, Mohadese ;
Abolghasemi, Iamileh ;
Salehi, Masoud ;
Hasannezhad, Malihe ;
Kargarian-Marvasti, Sadegh .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (04)
[44]   Improved Mixture Cure Model Using Machine Learning Approaches [J].
Wang, Huina ;
Feng, Tian ;
Liang, Baosheng .
MATHEMATICS, 2025, 13 (04)
[45]   Modeling credit risk in credit unions using survival analysis [J].
Hassan, M. Kabir ;
Brodmann, Jennifer ;
Rayfield, Blake ;
Huda, Makeen .
INTERNATIONAL JOURNAL OF BANK MARKETING, 2018, 36 (03) :482-495
[46]   Causal estimation using semiparametric transformation models under prevalent sampling [J].
Cheng, Yu-Jen ;
Wang, Mei-Cheng .
BIOMETRICS, 2015, 71 (02) :302-312
[47]   COMPARISON OF MIXTURE AND NON-MIXTURE CURE MODELS WITH STANDARD PARAMETRIC DISTRIBUTIONS: APPLICATION TO ORAL CANCER DATA [J].
Bindu, T. ;
Kumaran, M. ;
Babu, T. P. Sajith .
JP JOURNAL OF BIOSTATISTICS, 2021, 18 (03) :409-427
[48]   Semiparametric Estimation in Transformation Models with Cure Fraction [J].
Zhao, Xiaobing ;
Zhou, Xian .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (18) :3371-3388
[49]   Controlled variable selection in Weibull mixture cure models for high-dimensional data [J].
Fu, Han ;
Nicolet, Deedra ;
Mrozek, Krzysztof ;
Stone, Richard M. ;
Eisfeld, Ann-Kathrin ;
Byrd, John C. ;
Archer, Kellie J. .
STATISTICS IN MEDICINE, 2022, 41 (22) :4340-4366
[50]   Mixture cure models with time-varying and multilevel frailties for recurrent event data [J].
Tawiah, Richard ;
McLachlan, Geoffrey ;
Ng, Shu Kay .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (05) :1368-1385