Probability of default estimation in credit risk using mixture cure models

被引:2
作者
Pelaez, Rebeca [1 ]
Van Keilegom, Ingrid [2 ]
Cao, Ricardo [3 ]
Vilar, Juan M. [3 ]
机构
[1] Univ Carlos III Madrid, Dept Stat, Madrid, Spain
[2] Katholieke Univ Leuven, Res Ctr Operat Res & Stat ORSTAT, Leuven, Belgium
[3] Univ A Coruna, Dept Math, Res Grp MODES, CITIC, La Coruna, Spain
基金
欧洲研究理事会;
关键词
Censored data; Survival analysis; Nonparametric estimation; Kernel method; BOOTSTRAP BANDWIDTH SELECTION; SURVIVAL ANALYSIS; NONPARAMETRIC-ESTIMATION;
D O I
10.1016/j.csda.2023.107853
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An estimator of the probability of default (PD) in credit risk is proposed. It is derived from a nonparametric conditional survival function estimator based on cure models. Asymptotic expressions for the bias and the variance, as well as the asymptotic normality of the proposed estimator are presented. A simulation study shows the performance of the nonparametric estimator compared with Beran's PD estimator and other semiparametric methods. Finally, an empirical study based on modified real data illustrates the practical behaviour.(c) 2023 Published by Elsevier B.V.
引用
收藏
页数:23
相关论文
共 50 条
[21]   Default probability estimation via pair copula constructions [J].
Dalla Valle, Luciana ;
De Giuli, Maria Elena ;
Tarantola, Claudia ;
Manelli, Claudio .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 249 (01) :298-311
[22]   Quantification of model risk with an application to probability of default estimation and stress testing for a large corporate portfolio [J].
Jacobs, Michael, Jr. .
JOURNAL OF RISK MODEL VALIDATION, 2022, 16 (03) :73-111
[23]   Measuring the Default Risk of Small Business Loans: Improved Credit Risk Prediction Using Deep Learning [J].
Dendramis, Yiannis ;
Tzavalis, Elias ;
Cheimarioti, Aikaterini .
JOURNAL OF FORECASTING, 2025,
[24]   A penalized likelihood approach for mixture cure models [J].
Corbiere, Fabien ;
Commenges, Daniel ;
Taylor, Jeremy M. G. ;
Joly, Pierre .
STATISTICS IN MEDICINE, 2009, 28 (03) :510-524
[25]   Approximate Bayesian inference for mixture cure models [J].
E. Lázaro ;
C. Armero ;
V. Gómez-Rubio .
TEST, 2020, 29 :750-767
[26]   Approximate Bayesian inference for mixture cure models [J].
Lazaro, E. ;
Armero, C. ;
Gomez-Rubio, V .
TEST, 2020, 29 (03) :750-767
[27]   On the likelihood of mixture cure models [J].
Wang, Antai ;
Zhang, Yilong ;
Shao, Yongzhao .
STATISTICS & PROBABILITY LETTERS, 2017, 131 :51-55
[28]   A SAS macro for parametric and semiparametric mixture cure models [J].
Corbiere, Fabien ;
Joly, Pierre .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 85 (02) :173-180
[29]   Latency function estimation under the mixture cure model when the cure status is available [J].
Safari, Wende Clarence ;
Lopez-de-Ullibarri, Ignacio ;
Amalia Jacome, Maria .
LIFETIME DATA ANALYSIS, 2023, 29 (03) :608-627
[30]   Default probability estimation in small samples-with an application to sovereign bonds [J].
Orth, Walter .
QUANTITATIVE FINANCE, 2013, 13 (12) :1891-1902