Genes selection using deep learning and explainable artificial intelligence for chronic lymphocytic leukemia predicting the need and time to therapy

被引:5
作者
Morabito, Fortunato [1 ]
Adornetto, Carlo [2 ]
Monti, Paola [3 ]
Amaro, Adriana [4 ]
Reggiani, Francesco [4 ]
Colombo, Monica [5 ]
Rodriguez-Aldana, Yissel [2 ]
Tripepi, Giovanni [6 ]
D'Arrigo, Graziella [6 ]
Vener, Claudia [7 ]
Torricelli, Federica [8 ]
Rossi, Teresa [8 ]
Neri, Antonino [9 ]
Ferrarini, Manlio [10 ]
Cutrona, Giovanna [5 ]
Gentile, Massimo [11 ,12 ]
Greco, Gianluigi [2 ]
机构
[1] A Sforza Foundat, Biotechnol Res Unit, Cosenza, Italy
[2] Univ Calabria, Dept Math & Comp Sci, Cosenza, Italy
[3] Osped Policlin San Martino, Mutagenesis & Canc Prevent Unit, Ist Ricovero & Cura Carattere Sci IRCCS, Genoa, Italy
[4] Osped Policlin San Martino, Tumor Epigenet Unit, Ist Ricovero & Cura Carattere Sci IRCCS, Genoa, Italy
[5] Osped Policlin San Martino, Mol Pathol Unit, Ist Ricovero & Cura Carattere Sci IRCCS, Genoa, Italy
[6] CNR, Consiglio Nazl Ric CNR, Ist Fisiol Clin, Reggio Di Calabria, Italy
[7] Univ Milan, Dept Oncol & Hematooncol, Milan, Italy
[8] Ist Ricovero & Cura Crabtree Sci USL IRCCS Reggio, Azienda Unita Sanit Locale, Lab Translat Res, Reggio Emilia, Italy
[9] Ist Ricovero & Cura Carattere Sci USL IRCCS Reggio, Azienda Unita Sanit Locale, Sci Directorate, Reggio Emilia, Italy
[10] Osped Policlin San Martino, Unita Operar UO Mol Pathol, Ist Ricovero & Cura Carattere Sci IRCCS, Genoa, Italy
[11] Aienda Osped AO Cosenza, Dept Oncohematol, Hematol Unit, Cosenza, Italy
[12] Univ Calabria, Dept Pharm & Hlth & Nutr Sci, Cosenza, Italy
来源
FRONTIERS IN ONCOLOGY | 2023年 / 13卷
关键词
chronic lymphocytic leukemia; gene expression profile; deep learning; explainable artificial intelligence; feature selection; GROWTH-FACTOR-I; B-CELLS; EXPRESSION SIGNATURE; PROGNOSTIC INDEX; CLL-IPI; SURVIVAL; RECEPTOR; PATHWAY; RNA; PROGRESSION;
D O I
10.3389/fonc.2023.1198992
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Analyzing gene expression profiles (GEP) through artificial intelligence provides meaningful insight into cancer disease. This study introduces DeepSHAP Autoencoder Filter for Genes Selection (DSAF-GS), a novel deep learning and explainable artificial intelligence-based approach for feature selection in genomics-scale data. DSAF-GS exploits the autoencoder's reconstruction capabilities without changing the original feature space, enhancing the interpretation of the results. Explainable artificial intelligence is then used to select the informative genes for chronic lymphocytic leukemia prognosis of 217 cases from a GEP database comprising roughly 20,000 genes. The model for prognosis prediction achieved an accuracy of 86.4%, a sensitivity of 85.0%, and a specificity of 87.5%. According to the proposed approach, predictions were strongly influenced by CEACAM19 and PIGP, moderately influenced by MKL1 and GNE, and poorly influenced by other genes. The 10 most influential genes were selected for further analysis. Among them, FADD, FIBP, FIBP, GNE, IGF1R, MKL1, PIGP, and SLC39A6 were identified in the Reactome pathway database as involved in signal transduction, transcription, protein metabolism, immune system, cell cycle, and apoptosis. Moreover, according to the network model of the 3D protein-protein interaction (PPI) explored using the NetworkAnalyst tool, FADD, FIBP, IGF1R, QTRT1, GNE, SLC39A6, and MKL1 appear coupled into a complex network. Finally, all 10 selected genes showed a predictive power on time to first treatment (TTFT) in univariate analyses on a basic prognosticmodel including IGHV mutational status, del(11q) and del(17p), NOTCH1mutations, beta 2-microglobulin, Rai stage, and B-lymphocytosis known to predict TTFT in CLL. However, only IGF1R [hazard ratio (HR) 1.41, 95% CI 1.08-1.84, P=0.013), COL28A1 (HR 0.32, 95% CI 0.10-0.97, P=0.045), and QTRT1 (HR 7.73, 95% CI 2.48-24.04, P<0.001) genes were significantly associated with TTFT in multivariable analyses when combined with the prognostic factors of the basic model, ultimately increasing the Harrell's c-index and the explained variation to 78.6% (versus 76.5% of the basic prognostic model) and 52.6% (versus 42.2% of the basic prognostic model), respectively. Also, the goodness of model fit was enhanced (chi(2) = 20.1, P=0.002), indicating its improved performance above the basic prognostic model. In conclusion, DSAF-GS identified a group of significant genes for CLL prognosis, suggesting future directions for bio-molecular research.
引用
收藏
页数:17
相关论文
共 90 条
  • [1] A gene expression assay based on chronic lymphocytic leukemia activation in the microenvironment to predict progression br
    Abrisqueta, Pau
    Medina, Daniel
    Villacampa, Guillermo
    Lu, Junyan
    Alcoceba, Miguel
    Carabia, Julia
    Boix, Joan
    Tazon-Vega, Barbara
    Iacoboni, Gloria
    Bobillo, Sabela
    Marin-Niebla, Ana
    Gonzalez, Marcos
    Zenz, Thorsten
    Crespo, Marta
    Bosch, Francesc
    [J]. BLOOD ADVANCES, 2022, 6 (21) : 5763 - 5773
  • [2] Down-regulation of hepatic expression of GHR/STAT5/IGF-1 signaling pathway fosters development and aggressiveness of HCV-related hepatocellular carcinoma: Crosstalk with Snail-1 and type 2 transforming growth factor-beta receptor
    Abu El-Makarem, Mona A.
    Kamel, Mariana F.
    Mohamed, Ahmed A.
    Ali, Hisham A.
    Mohamed, Mahmoud R.
    Mohamed, Alaa El-Deen M.
    Ameen, Mahmoud G.
    Hassnine, Alshymaa A.
    Hassan, Hatem A.
    [J]. PLOS ONE, 2022, 17 (11):
  • [3] Artificial intelligence models in chronic lymphocytic leukemia - recommendations toward state-of-the-art
    Agius, Rudi
    Parviz, Mehdi
    Niemann, Carsten Utoft
    [J]. LEUKEMIA & LYMPHOMA, 2022, 63 (02) : 265 - 278
  • [4] Machine learning can identify newly diagnosed patients with CLL at high risk of infection
    Agius, Rudi
    Brieghel, Christian
    Andersen, Michael A.
    Pearson, Alexander T.
    Ledergerber, Bruno
    Cozzi-Lepri, Alessandro
    Louzoun, Yoram
    Andersen, Christen L.
    Bergstedt, Jacob
    von Stemann, Jakob H.
    Jorgensen, Mette
    Tang, Man-Hung Eric
    Fontes, Magnus
    Bahlo, Jasmin
    Herling, Carmen D.
    Hallek, Michael
    Lundgren, Jens
    MacPherson, Cameron Ross
    Larsen, Jan
    Niemann, Carsten U.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [5] Feature selection methods on gene expression microarray data for cancer classification: A systematic review
    Alhenawi, Esra'a
    Al-Sayyed, Rizik
    Hudaib, Amjad
    Mirjalili, Seyedali
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [6] Prognostic indices in chronic lymphocytic leukaemia: where do we stand how do we proceed?
    Baliakas, P.
    Mattsson, M.
    Stamatopoulos, K.
    Rosenquist, R.
    [J]. JOURNAL OF INTERNAL MEDICINE, 2016, 279 (04) : 347 - 357
  • [7] Bank D, 2020, ARXIV PREPRINT ARXIV
  • [8] Upregulation of CD38 gene expression in leukemic B cells by interferon types I and II
    Bauvois, B
    Durant, L
    Laboureau, J
    Barthélémy, E
    Rouillard, D
    Boulla, G
    Deterre, P
    [J]. JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, 1999, 19 (09) : 1059 - 1066
  • [9] Activation of Interferon Signaling in Chronic Lymphocytic Leukemia Cells Contributes to Apoptosis Resistance via a JAK-Src/STAT3/Mcl-1 Signaling Pathway
    Bauvois, Brigitte
    Pramil, Elodie
    Jondreville, Ludovic
    Quiney, Claire
    Nguyen-Khac, Florence
    Susin, Santos A.
    [J]. BIOMEDICINES, 2021, 9 (02) : 1 - 15
  • [10] InnateDB: systems biology of innate immunity and beyond-recent updates and continuing curation
    Breuer, Karin
    Foroushani, Amir K.
    Laird, Matthew R.
    Chen, Carol
    Sribnaia, Anastasia
    Lo, Raymond
    Winsor, Geoffrey L.
    Hancock, Robert E. W.
    Brinkman, Fiona S. L.
    Lynn, David J.
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D1228 - D1233