Construction of NH2-MIL-101(Fe)@Bi2MoO6 S-scheme heterojunction for efficient and selective photocatalytic CO2 conversion to CO

被引:13
|
作者
Feng, Huifang [1 ]
Sun, Yitong [1 ]
Xu, Qiaozhen [1 ]
Liu, Hong [1 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn, 99 Shangda Rd, Shanghai 200444, Peoples R China
基金
上海市自然科学基金;
关键词
NH 2-MIL-101(Fe); S-scheme; Photoreduction; CO2; METAL-ORGANIC FRAMEWORK; REDUCTION; FABRICATION; MOFS;
D O I
10.1016/j.apcata.2023.119350
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing efficient photocatalyst to promote the conversion of CO2 into value-added chemicals remains challenging. Here, novel NH2-MIL-101(Fe)@Bi2MoO6 S-scheme heterojunctions were fabricated via a solvothermal method, in which Bi2MoO6 (BMO) nanoparticles uniformly growing on the NH2-MIL-101(Fe) (NM101) octahedrons with intimate contact interface. The resultant heterojunctions revealed significantly enhanced activity for CO2 photoreduction. The optimal performance was achieved when the content of BMO was 10 wt%, and the formation rate of CO reached 67.0 & mu;mol & BULL;g � 1 & BULL;h-1 under visible light illumination (with apparent quantum efficiency of 0.09 % at 450 nm), which was 3.2-fold of individual NM101. The boosting activity benefited from the formation of S-scheme heterojunction at the NM101 @BMO interfaces, which facilitated the separation of photoinduced electron-hole pairs with strong redox ability at the interface. This S-scheme charge transfer mechanism was further validated by the in-situ XPS and fluorescence probe molecular experiment. Besides, the intermediates and preliminary mechanism of photoreaction were unraveled based on in-situ DRIFTS analysis. This work provides some novel insights for designing efficient S-scheme photocatalysts for CO2 photoreduction.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] CoO QDs/Bi2MoO6 monolayer: A novel S-scheme heterojunction for highly efficient photocatalytic C2H4 degradation
    Hong, Xu
    Luo, Xiao
    Xu, Xinyue
    Ji, Peizhu
    Yue, Shiya
    Li, Rong
    Homewood, Kevin Peter
    Xia, Xiaohong
    Gao, Yun
    Chen, Xuxing
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 327
  • [22] A novel S-scheme heterojunction NH2-MIL-101(Fe)/In2S3 with significantly enhanced photocatalytic activity for the degradation of tetracycline: Insight into interfacial charge transfer mechanism
    Li, Na
    Tang, Yubin
    Chen, Fangyan
    Zhang, Kaiwen
    Han, Shuo
    Song, Yanhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1019
  • [23] Visible light driven S-scheme heterojunction Zn3In2S6/Bi2MoO6 for efficient degradation of metronidazole
    Wang, Chen
    Liu, Haiyan
    Wang, Guifang
    Huang, Wenyu
    Wei, Zongwu
    Fang, Haiyan
    Shen, Fang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 917
  • [24] Boosting Photocatalytic CO2 Reduction Efficiency by Heterostructures of NH2-MIL-101(Fe)/g-C3N4
    Dao, Xiao-Yao
    Xie, Xia-Fei
    Guo, Jin-Han
    Zhang, Xiao-Yu
    Kang, Yan-Shang
    Sun, Wei-Yin
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) : 3946 - 3954
  • [25] Bi2MoO6/ZnIn2S4 S-scheme heterojunction containing oxygen vacancies for photocatalytic degradation of organic pollutant
    Wang, Dandan
    Lin, Zhaoxin
    Yang, Weiting
    Li, Hongji
    Su, Zhongmin
    JOURNAL OF MOLECULAR STRUCTURE, 2025, 1321
  • [26] Rational Construction of CuO/CdS for Highly Selective CO2 to CO Conversion with S-Scheme Photocatalysts
    Yan, Chenlong
    Xu, Mengyang
    Li, Jinze
    Chang, Bingqing
    Chen, Qidi
    Cao, Wangye
    Xiao, Wei
    Wang, Huiqin
    Huo, Pengwei
    ENERGY TECHNOLOGY, 2024,
  • [27] A novel hierarchical nanostructured S-scheme RGO/Bi2MoO6/Bi2WO6 heterojunction: Excellent photocatalytic degradation activity for pollutants
    Chen, Ruifang
    Zhou, Wei
    Qu, Wenwen
    Wang, Yijun
    Shi, Liyan
    Chen, Shangmin
    APPLIED SURFACE SCIENCE, 2022, 588
  • [28] Double bismuth-based Bi2S3/Bi2MoO6 S-scheme heterojunction for ultrafast photocatalytic removal of Cr(VI)
    Xing, Xu
    Zhang, Luxin
    Ren, Yue
    Li, Yunfeng
    Yu, Han
    Shi, Weiwei
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [29] Ultra-Fast Construction of Novel S-Scheme CuBi2O4/CuO Heterojunction for Selectively Photocatalytic CO2 Conversion to CO
    Shi, Weina
    Qiao, Xiu
    Wang, Jichao
    Zhao, Miao
    Ge, Hongling
    Ma, Jingjing
    Liu, Shanqin
    Zhang, Wanqing
    NANOMATERIALS, 2022, 12 (18)
  • [30] Plasmonic Bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction
    Liu, Lizhong
    Dai, Kai
    Zhang, Jinfeng
    Li, Linlin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 604 : 844 - 855