Recent developments in modeling, imaging, and monitoring of cardiovascular diseases using machine learning

被引:23
作者
Moradi, Hamed [1 ]
Al-Hourani, Akram [2 ]
Concilia, Gianmarco [2 ]
Khoshmanesh, Farnaz [3 ]
Nezami, Farhad R. [4 ]
Needham, Scott [5 ]
Baratchi, Sara [6 ]
Khoshmanesh, Khashayar [2 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[2] RMIT Univ, Sch Engn, Melbourne, Vic, Australia
[3] La Trobe Univ, Sch Allied Hlth Human Serv & Sport, Melbourne, Vic, Australia
[4] Harvard Med Sch, Brigham & Womens Hosp, Div Thorac & Cardiac Surg, Boston, MA USA
[5] Leading Technol Grp, Melbourne, Vic, Australia
[6] RMIT Univ, Sch Hlth & Biomed Sci, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Cardiovascular diseases; Computational fluid dynamics; Flow imaging; Wearable sensors; Machine learning; COMPUTATIONAL FLUID-DYNAMICS; ARTIFICIAL-INTELLIGENCE; FLOW; PRESSURE; BLOOD; MRI; CLASSIFICATION; PREDICTION; ANEURYSM; VELOCITY;
D O I
10.1007/s12551-022-01040-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Cardiovascular diseases are the leading cause of mortality, morbidity, and hospitalization around the world. Recent technological advances have facilitated analyzing, visualizing, and monitoring cardiovascular diseases using emerging computational fluid dynamics, blood flow imaging, and wearable sensing technologies. Yet, computational cost, limited spatiotemporal resolution, and obstacles for thorough data analysis have hindered the utility of such techniques to curb cardiovascular diseases. We herein discuss how leveraging machine learning techniques, and in particular deep learning methods, could overcome these limitations and offer promise for translation. We discuss the remarkable capacity of recently developed machine learning techniques to accelerate flow modeling, enhance the resolution while reduce the noise and scanning time of current blood flow imaging techniques, and accurate detection of cardiovascular diseases using a plethora of data collected by wearable sensors.
引用
收藏
页码:19 / 33
页数:15
相关论文
共 123 条
[11]   Transcatheter Aortic Valve Implantation Represents an Anti-Inflammatory Therapy Via Reduction of Shear Stress-Induced, Piezo-1-Mediated Monocyte Activation [J].
Baratchi, Sara ;
Zaldivia, Maria T. K. ;
Wallert, Maria ;
Loseff-Silver, Julia ;
Al-Aryahi, Sefaa ;
Zamani, Jalal ;
Thurgood, Peter ;
Salim, Agus ;
Htun, Nay M. ;
Stub, Dion ;
Vahidi, Parisa ;
Duffy, Stephen J. ;
Walton, Antony ;
Nguyen, Thanh Ha ;
Jaworowski, Anthony ;
Khoshmanesh, Khashayar ;
Peter, Karlheinz .
CIRCULATION, 2020, 142 (11) :1092-1105
[12]   Smart wearable devices in cardiovascular care: where we are and how to move forward [J].
Bayoumy, Karim ;
Gaber, Mohammed ;
Elshafeey, Abdallah ;
Mhaimeed, Omar ;
Dineen, Elizabeth H. ;
Marvel, Francoise A. ;
Martin, Seth S. ;
Muse, Evan D. ;
Turakhia, Mintu P. ;
Tarakji, Khaldoun G. ;
Elshazly, Mohamed B. .
NATURE REVIEWS CARDIOLOGY, 2021, 18 (08) :581-599
[13]   Computational fluid-structure interaction: methods and application to a total cavopulmonary connection [J].
Bazilevs, Yuri ;
Hsu, M. -C. ;
Benson, D. J. ;
Sankaran, S. ;
Marsden, A. L. .
COMPUTATIONAL MECHANICS, 2009, 45 (01) :77-89
[14]  
Benjamin EJ, 2019, CIRCULATION, V139, pE56, DOI [10.1161/CIR.0000000000000659, 10.1161/CIR.0000000000000746]
[15]   Phase-Contrast Magnetic Resonance Imaging Measurements in Intracranial Aneurysms In Vivo of Flow Patterns, Velocity Fields, and Wall Shear Stress: Comparison with Computational Fluid Dynamics [J].
Boussel, Loic ;
Rayz, Vitaliy ;
Martin, Alastair ;
Acevedo-Bolton, Gabriel ;
Lawton, Michael T. ;
Higashida, Randall ;
Smith, Wade S. ;
Young, William L. ;
Saloner, David .
MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (02) :409-417
[16]   Cardiovascular Disease in the Developing World [J].
Celermajer, David S. ;
Chow, Clara K. ;
Marijon, Eloi ;
Anstey, Nicholas M. ;
Woo, Kam S. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2012, 60 (14) :1207-1216
[17]   A monolithic fluid-structure interaction framework applied to red blood cells [J].
Cetin, Ayse ;
Sahin, Mehmet .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2019, 35 (02)
[18]  
Chen HY, 2010, COMPUTATIONAL CARDIOVASCULAR MECHANICS: MODELING AND APPLICATIONS IN HEART FAILURE, P141, DOI 10.1007/978-1-4419-0730-1_9
[19]   Flexible Wearable Sensors for Cardiovascular Health Monitoring [J].
Chen, Shuwen ;
Qi, Jiaming ;
Fan, Shicheng ;
Qiao, Zheng ;
Yeo, Joo Chuan ;
Lim, Chwee Teck .
ADVANCED HEALTHCARE MATERIALS, 2021, 10 (17)
[20]  
Chollet F., 2017, Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek, Vfirst