Recent developments in modeling, imaging, and monitoring of cardiovascular diseases using machine learning

被引:23
作者
Moradi, Hamed [1 ]
Al-Hourani, Akram [2 ]
Concilia, Gianmarco [2 ]
Khoshmanesh, Farnaz [3 ]
Nezami, Farhad R. [4 ]
Needham, Scott [5 ]
Baratchi, Sara [6 ]
Khoshmanesh, Khashayar [2 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[2] RMIT Univ, Sch Engn, Melbourne, Vic, Australia
[3] La Trobe Univ, Sch Allied Hlth Human Serv & Sport, Melbourne, Vic, Australia
[4] Harvard Med Sch, Brigham & Womens Hosp, Div Thorac & Cardiac Surg, Boston, MA USA
[5] Leading Technol Grp, Melbourne, Vic, Australia
[6] RMIT Univ, Sch Hlth & Biomed Sci, Melbourne, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Cardiovascular diseases; Computational fluid dynamics; Flow imaging; Wearable sensors; Machine learning; COMPUTATIONAL FLUID-DYNAMICS; ARTIFICIAL-INTELLIGENCE; FLOW; PRESSURE; BLOOD; MRI; CLASSIFICATION; PREDICTION; ANEURYSM; VELOCITY;
D O I
10.1007/s12551-022-01040-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Cardiovascular diseases are the leading cause of mortality, morbidity, and hospitalization around the world. Recent technological advances have facilitated analyzing, visualizing, and monitoring cardiovascular diseases using emerging computational fluid dynamics, blood flow imaging, and wearable sensing technologies. Yet, computational cost, limited spatiotemporal resolution, and obstacles for thorough data analysis have hindered the utility of such techniques to curb cardiovascular diseases. We herein discuss how leveraging machine learning techniques, and in particular deep learning methods, could overcome these limitations and offer promise for translation. We discuss the remarkable capacity of recently developed machine learning techniques to accelerate flow modeling, enhance the resolution while reduce the noise and scanning time of current blood flow imaging techniques, and accurate detection of cardiovascular diseases using a plethora of data collected by wearable sensors.
引用
收藏
页码:19 / 33
页数:15
相关论文
共 123 条
[1]   Wearable sensor-based evaluation of psychosocial stress in patients with metabolic syndrome [J].
Akbulut, Fatma Patlar ;
Ikitimur, Baris ;
Akan, Aydin .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 104
[2]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[3]   Impact of Aneurysm Repair on Thoracic Aorta Hemodynamics [J].
Allen, Bradley D. ;
Barker, Alex J. ;
Kansal, Preeti ;
Collins, Jeremy D. ;
Carr, James C. ;
Malaisrie, S. Chris ;
Markl, Michael .
CIRCULATION, 2013, 128 (17) :E341-E343
[4]   Doppler echocardiography: A contemporary review [J].
Anavekar, Nandan S. ;
Oh, Jae K. .
JOURNAL OF CARDIOLOGY, 2009, 54 (03) :347-358
[5]  
[Anonymous], DOCWIRENEWS
[6]   Machine Learning for Cardiovascular Biomechanics Modeling: Challenges and Beyond [J].
Arzani, Amirhossein ;
Wang, Jian-Xun ;
Sacks, Michael S. ;
Shadden, Shawn C. .
ANNALS OF BIOMEDICAL ENGINEERING, 2022, 50 (06) :615-627
[7]   Uncovering near-wall blood flow from sparse data with physics-informed neural networks [J].
Arzani, Amirhossein ;
Wang, Jian-Xun ;
D'Souza, Roshan M. .
PHYSICS OF FLUIDS, 2021, 33 (07)
[8]  
ATmega32-avr, US
[9]   Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes [J].
Austin, Peter C. ;
Tu, Jack V. ;
Ho, Jennifer E. ;
Levy, Daniel ;
Lee, Douglas S. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2013, 66 (04) :398-407
[10]   Four-dimensional Flow MRI: Principles and Cardiovascular Applications [J].
Azarine, Arshid ;
Garcon, Philippe ;
Stansal, Audrey ;
Canepa, Nadia ;
Angelopoulos, Giorgios ;
Silvera, Stephane ;
Sidi, Daniel ;
Marteau, Veronique ;
Zins, Marc .
RADIOGRAPHICS, 2019, 39 (03) :632-+