Contour Integral Methods for Nonlinear Eigenvalue Problems: A Systems Theoretic Approach

被引:3
|
作者
Brennan, Michael C. [1 ]
Embree, Mark [2 ]
Gugercin, Serkan [2 ]
机构
[1] MIT, Ctr Computat Engn, Cambridge, MA 02139 USA
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
nonlinear eigenvalue problem; contour integrals; rational interpolation; system realiza-tion; Loewner matrices; model reduction; filter function; REALIZATION;
D O I
10.1137/20M1389303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Contour integral methods for eigenvalue problems seek to compute a subset of the spectrum in a bounded region of the complex plane. We briefly survey this class of algorithms, establishing a relationship to system realization and rational interpolation techniques in control theory. This connection casts contour integral methods for linear and nonlinear eigenvalue problems in a general framework that gives perspective on existing methods and suggests a broad class of new algorithms. These methods replace the usual block Hankel matrix pencils (which interpolate at infinity) with Loewner matrix pencils (enabling interpolation at many points in the complex plane). While this framework is novel for linear eigenvalue problems, we focus our presentation on the nonlinear case. The old and new methods share the same intensive computations (the solution of linear systems associated with contour integration), allowing one to explore a vast range of new eigenvalue approximations with little additional work. Numerical examples illustrate the potential of this approach. We also discuss how the concept of filter functions can be employed in this new framework, and we close with a discussion of interpolation point selection.
引用
收藏
页码:439 / 470
页数:32
相关论文
共 50 条
  • [21] NONLINEAR EIGENVALUE PROBLEMS WITH SPECIFIED EIGENVALUES
    Karow, Michael
    Kressner, Daniel
    Mengi, Emre
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (03) : 819 - 834
  • [22] Structured pseudospectra for nonlinear eigenvalue problems
    Wagenknecht, T.
    Michiels, W.
    Green, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 212 (02) : 245 - 259
  • [23] RANDOMIZED SKETCHING OF NONLINEAR EIGENVALUE PROBLEMS
    Guttel, Stefan
    Kressner, Daniel
    Vandereycken, Bart
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (05): : A3022 - A3043
  • [24] Perturbation effects in nonlinear eigenvalue problems
    Radulescu, Vicentiu
    Repovs, Dusan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) : 3030 - 3038
  • [25] NLEVP: A Collection of Nonlinear Eigenvalue Problems
    Betcke, Timo
    Higham, Nicholas J.
    Mehrmann, Volker
    Schroeder, Christian
    Tisseur, Francoise
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02):
  • [26] Chebyshev interpolation for nonlinear eigenvalue problems
    Cedric Effenberger
    Daniel Kressner
    BIT Numerical Mathematics, 2012, 52 : 933 - 951
  • [27] Numerical Analysis of Nonlinear Eigenvalue Problems
    Eric Cancès
    Rachida Chakir
    Yvon Maday
    Journal of Scientific Computing, 2010, 45 : 90 - 117
  • [28] FEAST eigensolver for nonlinear eigenvalue problems
    Gavin, Brendan
    Miedlar, Agnieszka
    Polizzi, Eric
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 27 : 107 - 117
  • [29] A Nonlinear QR Algorithm for Banded Nonlinear Eigenvalue Problems
    Garrett, C. Kristopher
    Bai, Zhaojun
    Li, Ren-Cang
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2016, 43 (01):
  • [30] An overview of a posteriori error estimation and post-processing methods for nonlinear eigenvalue problems
    Dusson, Genevieve
    Maday, Yvon
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 491