Programmable, high-speed, adaptive optics partially confocal multi-spot ophthalmoscope using a digital micromirror device

被引:7
作者
Lee, Soohyun [1 ]
Choi, Stacey S. [1 ,2 ]
Meleppat, Ratheesh K. [3 ,4 ]
Zawadzki, Robert J. [3 ,4 ]
Doble, Nathan [1 ,2 ]
机构
[1] Ohio State Univ, Coll Optometry, 338 West 10th Ave, Columbus, OH 43210 USA
[2] Ohio State Univ, Havener Eye Inst, Dept Ophthalmol & Visual Sci, 915 Olentangy River Rd Suite 5000, Wright Patterson AFB, OH 43212 USA
[3] Univ Calif Sacramento, UC Davis Eye Ctr, Dept Ophthalmol & Vis Sci, Davis, 4860 Y St, Suite 2400, Sacramento, CA 95817 USA
[4] Univ Calif Davis, Dept Cell Biol & Human Anat, UC Davis EyePod Small Anim Ocular Imaging Lab, 4320 Tupper Hall, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
Cameras; -; Ophthalmology;
D O I
10.1364/OL.480688
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A high-speed, adaptive optics partially confocal multi-spot ophthalmoscope (AO-pcMSO) using a digital micromirror device (DMD) in the illumination channel and a fast 2D CMOS camera is described. The camera is synchronized with the DMD allowing projection of multiple, simultaneous AO-corrected spots onto the human retina. Spatial filtering on each raw retinal image before reconstruction works as an array virtual pinholes. A frame acquisition rate of 250 fps is achieved by applying this parallel projection scheme. The contrast improves by 2-3 fold when compared to a standard flood illumination architecture. Partially confocal images of the human retina show cone and rod photoreceptors over a range of retinal eccentricities. & COPY; 2023 Optica Publishing Group
引用
收藏
页码:791 / 794
页数:4
相关论文
共 15 条
[1]   Digital micromirror device based ophthalmoscope with concentric circle scanning [J].
Damodaran, Mathi ;
Vienola, Kari V. ;
Braaf, Boy ;
Vermeer, Koenraad A. ;
de Boer, Johannes F. .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (05) :2766-2780
[2]   FREQUENCY ANALYSIS OF HUMAN INVOLUNTARY EYE MOVEMENT [J].
FINDLAY, JM .
KYBERNETIK, 1971, 8 (06) :207-&
[3]   Partial-field illumination ophthalmoscope: improving the contrast of a camera-based retinal imager [J].
Krafft, Lea ;
Gofas-Salas, Elena ;
Lai-Tim, Yann ;
Paques, Michel ;
Mugnier, Laurent ;
Thouvenin, Olivier ;
Mece, Pedro ;
Meimon, Serge .
APPLIED OPTICS, 2021, 60 (31) :9951-9956
[4]  
Laser Institute of America, 2018, AM NAT STAND SAF US
[5]   Supernormal vision and high-resolution retinal imaging through adaptive optics [J].
Liang, JZ ;
Williams, DR ;
Miller, DT .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (11) :2884-2892
[6]   High speed adaptive optics ophthalmoscopy with an anamorphic point spread function [J].
Lu, Jing ;
Gu, Boyu ;
Wang, Xiaolin ;
Zhang, Yuhua .
OPTICS EXPRESS, 2018, 26 (11) :14356-14374
[7]   Adaptive optics parallel near-confocal scanning ophthalmoscopy [J].
Lu, Jing ;
Gu, Boyu ;
Wang, Xiaolin ;
Zhang, Yuhua .
OPTICS LETTERS, 2016, 41 (16) :3852-3855
[8]   Programmable Illumination and High-Speed, Multi-Wavelength, Confocal Microscopy Using a Digital Micromirror [J].
Martial, Franck P. ;
Hartell, Nicholas A. .
PLOS ONE, 2012, 7 (08)
[9]   Confocal Retinal Imaging Using a Digital Light Projector with a Near Infrared VCSEL Source [J].
Muller, Matthew S. ;
Elsner, Ann E. .
EMERGING DIGITAL MICROMIRROR DEVICE BASED SYSTEMS AND APPLICATIONS X, 2018, 10546
[10]   Adaptive optics flood-illumination camera for high speed retinal imaging [J].
Rha, Jungtae ;
Jonnal, Ravi S. ;
Thorn, Karen E. ;
Qu, Junle ;
Zhang, Yan ;
Miller, Donald T. .
OPTICS EXPRESS, 2006, 14 (10) :4552-4569