Best approximation-preserving operators over Hardy space

被引:0
作者
Abdullayev, F. G. [1 ,2 ]
Savchuk, V. V. [3 ]
Savchuk, M. V. [4 ]
机构
[1] Mersin Univ, Mersin, Turkiye
[2] Kyrgyz Turkish Manas Univ, Bishkek, Kyrgyzstan
[3] NAS Ukraine, Inst Math, Kiev, Ukraine
[4] NTU Ukraine Igor Sikorsky Kyiv Polytech Inst, Kiev, Ukraine
关键词
Hardy space; Best approximation; Hadamard product; Cauchy inequality; Landau inequality;
D O I
10.1007/s13324-023-00825-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T-n be the linear Hadamard convolution operator acting over Hardy space H-q, 1 <= q <= infinity. We call T-n a best approximation-preserving operator (BAP operator) if T-n(e(n)) = e(n), where e(n)(z) := z(n), and if parallel to T-n(f) parallel to(q) <= E-n(f)(q) for all f is an element of H-q, where E-n(f)(q) is the best approximation by algebraic polynomials of degree a most n - 1 in H-q space. We give necessary and sufficient conditions for T-n to be a BAP operator over H-infinity. We apply this result to establish an exact lower bound for the best approximation of bounded holomorphic functions. In particular, we show that the Landau-type inequality vertical bar(f) over capn vertical bar + c vertical bar(f) over capN vertical bar <= E-n (f)(infinity), where c > 0 and n < N, holds for every f is an element of H-infinity iff c <= 1/2 and N >= 2n + 1.
引用
收藏
页数:12
相关论文
共 11 条
  • [1] Best Approximation of Holomorphic Functions from Hardy Space in Terms of Taylor Coefficients
    Abdullayev, F. G.
    Abdullayev, G. A.
    Savchuk, V. V.
    [J]. FILOMAT, 2019, 33 (05) : 1417 - 1424
  • [2] Abdullayev FG., 2019, J NONLINEAR SCI APP, V12, P412, DOI DOI 10.22436/JNSA.012.07.01
  • [3] A note on continuous sums of ridge functions
    Aliev, Rashid A.
    Asgarova, Aysel A.
    Ismailov, Vugar E.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2019, 237 : 210 - 221
  • [4] Garnett J.B., 2007, Bounded Analytic Functions, Revised First Ed
  • [5] Goluzin G.M., 1969, GEOMETRIC THEORY FUN, DOI 10.1090/mmono/026
  • [6] LANDAU E., 1986, Darstellung und Begrundung~ Einiger Neuerer Ergebnisse der Funktionentheorie
  • [7] Exact Constants in Inequalities for the Taylor Coefficients of Bounded Holomorphic Functions in a Polydisk
    Meremelya, I. Yu.
    Savchuk, V. V.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2016, 67 (12) : 1913 - 1921
  • [8] Savchuk V.V., 2015, ZB PR I MAT NAN UKR, V12, P262
  • [9] Savchuk VV., 2007, UKR MATH J+, V59, P1163, DOI DOI 10.1007/S11253-007-0078-0
  • [10] SHEILSMALL T, 1973, J REINE ANGEW MATH, V258, P137