On L-reducible spherically symmetric Finsler metrics

被引:5
作者
Tayebi, A. [1 ]
Barati, F. [1 ]
机构
[1] Univ Qom, Fac Sci, Dept Math, Qom, Iran
关键词
L-reducible metric; C-reducible metric; Spherically symmetric Finsler metric; Randers metric; Landsberg metric; (ALPHA;
D O I
10.1016/j.difgeo.2023.102028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study one of the oldest open problems in Finsler geometry which was introduced by Matsumoto-Shimada in 1977 about the existence of a concrete L-reducible Finsler metric that is not C-reducible. To spot such a Finsler metric, we study the class of spherically symmetric Finsler metrics. We prove two rigidity theorems for spherically symmetric Finsler metrics. First, we prove that every spherically symmetric Finsler metric is semi-C-reducible. Second, we show that every non-Riemannian spherically symmetric Finsler metric is a generalized L-reducible metric. Finally, under a particular condition, we prove that every non-Riemannian L-reducible spherically symmetric Finsler metric on a manifold of dimension n & GE; 3 must be a Randers metric. This result provides a negative answer to Matsumoto-Shimada's problem in the class of spherically symmetric Finsler metrics.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 32 条
[1]  
Antonelli P., 1993, THEORY SPRAYS FINSLE
[2]   Finsleroid-Finsler spaces of positive-definite and relativistic types [J].
Asanov, G. S. .
REPORTS ON MATHEMATICAL PHYSICS, 2006, 58 (02) :275-300
[3]  
Asanov G.S., 1981, J SOV MATH, V17, P1610
[4]  
Asanov GS., 1985, Finsler Geometry, Relativity and Gauge Theories
[5]  
Bao D, 2004, J DIFFER GEOM, V66, P377
[6]  
Beizavi S., 2020, J FINSLER GEOM APPL, V1, P73
[7]  
Ghasemi A., 2021, J FINSLER GEOM APPL, V2, P63
[8]  
Ingarden R.S., 1987, DIFF GEOM METH THEOR
[9]  
Ingarden R.S., 1957, PR WROCLAW TOW NAUK, V45, P1
[10]  
Ingarden RS., 1954, Bull. Acad. Polon. Sci. Cl., V2, P305