Nonemptiness of severi varieties on enriques surfaces

被引:1
|
作者
Ciliberto, Ciro [1 ]
Dedieu, Thomas [2 ]
Galati, Concettina [3 ]
Knutsen, Andreas Leopold [4 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientif, I-00173 Rome, Italy
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UMR5219, F-31062 Toulouse 9, France
[3] Univ Calabria, Dipartimento Matemat Informat, Via P Bucci,Cubo 31B, I-87036 Arcavacata Di Rende, CS, Italy
[4] Univ Bergen, Dept Math, Postboks 7800, N-5020 Bergen, Norway
基金
欧盟地平线“2020”;
关键词
14H20; 14J28; 14D06; 14H10; 14J10; RATIONAL CURVES; NODAL CURVES; ABELIAN SURFACES; FAMILIES; SPACES; PROOF;
D O I
10.1017/fms.2023.47
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (S, L) be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible nodal curves in the linear system |L |, that is, for any number of nodes d = 0, ... , p(a) (L) -1. This solves a classical open problem and gives a positive answer to a recent conjecture of Pandharipande-Schmitt, under the additional condition of non-2-divisibility.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Arithmetic of singular Enriques surfaces
    Hulek, Klaus
    Schuett, Matthias
    ALGEBRA & NUMBER THEORY, 2012, 6 (02) : 195 - 230
  • [42] ON THE BRAUER GROUP OF ENRIQUES SURFACES
    Beauville, Arnaud
    MATHEMATICAL RESEARCH LETTERS, 2009, 16 (5-6) : 927 - 934
  • [43] Higher dimensional Enriques varieties and automorphisms of generalized Kummer varieties
    Boissiere, Samuel
    Nieper-Wisskirchen, Marc
    Sarti, Alessandra
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (05): : 553 - 563
  • [44] Enriques surfaces with eight nodes
    M. Mendes Lopes
    R. Pardini
    Mathematische Zeitschrift, 2002, 241 : 673 - 683
  • [45] On the Shafarevich conjecture for Enriques surfaces
    Takamatsu, Teppei
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (1-2) : 489 - 495
  • [46] Surfaces close to the Severi lines
    Conti, Federico
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (01) : 71 - 88
  • [47] Severi degrees on toric surfaces
    Liu, Fu
    Osserman, Brian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 739 : 121 - 158
  • [48] ENRIQUES SURFACES AND QUADRIC NETS
    VERRA, A
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 130 : 307 - 320
  • [49] Enriques surfaces with eight nodes
    Lopes, MM
    Pardini, R
    MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (04) : 673 - 683
  • [50] Classification of Involutions on Enriques Surfaces
    Ito, Hiroki
    Ohashi, Hisanori
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (01) : 159 - 188