Nonemptiness of severi varieties on enriques surfaces

被引:1
|
作者
Ciliberto, Ciro [1 ]
Dedieu, Thomas [2 ]
Galati, Concettina [3 ]
Knutsen, Andreas Leopold [4 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientif, I-00173 Rome, Italy
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UMR5219, F-31062 Toulouse 9, France
[3] Univ Calabria, Dipartimento Matemat Informat, Via P Bucci,Cubo 31B, I-87036 Arcavacata Di Rende, CS, Italy
[4] Univ Bergen, Dept Math, Postboks 7800, N-5020 Bergen, Norway
基金
欧盟地平线“2020”;
关键词
14H20; 14J28; 14D06; 14H10; 14J10; RATIONAL CURVES; NODAL CURVES; ABELIAN SURFACES; FAMILIES; SPACES; PROOF;
D O I
10.1017/fms.2023.47
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (S, L) be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible nodal curves in the linear system |L |, that is, for any number of nodes d = 0, ... , p(a) (L) -1. This solves a classical open problem and gives a positive answer to a recent conjecture of Pandharipande-Schmitt, under the additional condition of non-2-divisibility.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Involutions and Brauer-Severi varieties
    Gatsinzi, JB
    Tignol, JP
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1996, 7 (02): : 149 - 160
  • [32] Secondary fans and tropical Severi varieties
    Yang, Jihyeon Jessie
    MANUSCRIPTA MATHEMATICA, 2016, 149 (1-2) : 93 - 106
  • [33] On the section conjecture and Brauer–Severi varieties
    Giulio Bresciani
    Mathematische Zeitschrift, 2022, 300 : 1291 - 1296
  • [34] Construction of Brauer-Severi Varieties
    Garcia, Elisa Lorenzo
    CONTEMPORARY MATHEMATICS, 2021, 2 (04): : 279 - 292
  • [35] Thin Severi-Brauer Varieties
    Knus, Max-Albert
    Tignol, Jean-Pierre
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (03) : 745 - 782
  • [36] BLOCH'S CONJECTURE FOR ENRIQUES VARIETIES
    Laterveer, Robert
    OSAKA JOURNAL OF MATHEMATICS, 2018, 55 (03) : 423 - 438
  • [37] Quotients of Severi–Brauer Surfaces
    A. S. Trepalin
    Doklady Mathematics, 2021, 104 : 390 - 393
  • [38] A Characterization of Secant Varieties of Severi Varieties Among Cubic Hypersurfaces
    Fu, Baohua
    Jeong, Yewon
    Zak, Fyodor L.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (04) : 2763 - 2782
  • [39] ELLIPTIC FIBERS ON ENRIQUES SURFACES
    ANGERMULLER, G
    BARTH, W
    COMPOSITIO MATHEMATICA, 1982, 47 (03) : 317 - 332
  • [40] On automorphisms of Enriques surfaces and their entropy
    Matsumoto, Yuya
    Ohashi, Hisanori
    Rams, Slawomir
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (13) : 2084 - 2098