Nonemptiness of severi varieties on enriques surfaces

被引:1
|
作者
Ciliberto, Ciro [1 ]
Dedieu, Thomas [2 ]
Galati, Concettina [3 ]
Knutsen, Andreas Leopold [4 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientif, I-00173 Rome, Italy
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UMR5219, F-31062 Toulouse 9, France
[3] Univ Calabria, Dipartimento Matemat Informat, Via P Bucci,Cubo 31B, I-87036 Arcavacata Di Rende, CS, Italy
[4] Univ Bergen, Dept Math, Postboks 7800, N-5020 Bergen, Norway
基金
欧盟地平线“2020”;
关键词
14H20; 14J28; 14D06; 14H10; 14J10; RATIONAL CURVES; NODAL CURVES; ABELIAN SURFACES; FAMILIES; SPACES; PROOF;
D O I
10.1017/fms.2023.47
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (S, L) be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible nodal curves in the linear system |L |, that is, for any number of nodes d = 0, ... , p(a) (L) -1. This solves a classical open problem and gives a positive answer to a recent conjecture of Pandharipande-Schmitt, under the additional condition of non-2-divisibility.
引用
收藏
页数:32
相关论文
共 50 条