Wireless Channel Adaptive DNN Split Inference for Resource-Constrained Edge Devices

被引:6
|
作者
Lee, Jaeduk [1 ,2 ]
Lee, Hojung [3 ]
Choi, Wan [1 ,2 ]
机构
[1] Seoul Natl Univ SNU, Inst New Media & Commun, Seoul 08826, South Korea
[2] Seoul Natl Univ SNU, Dept Elect & Comp Engn, Seoul 08826, South Korea
[3] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Servers; Wireless communication; Performance evaluation; Uplink; Energy consumption; Downlink; Memory management; Deep learning; split inference; wireless channels; INTELLIGENCE;
D O I
10.1109/LCOMM.2023.3269769
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Split inference facilitates deep neural network (DNN) inference tasks at resource-constrained edge devices. However, a pre-determined split configuration of a DNN limits the inference performance in time-varying wireless channels. To accelerate the inference, we propose a two-stage wireless channel adaptive split inference method by considering memory and energy constraints on the edge device. The proposed scheme is able to offer the privacy of the edge device and improves inference performance in time-varying wireless channels by leveraging a U-shaped DNN splitting framework and adaptively determining the splitting points of a DNN in real-time according to time-varying wireless channel gains.
引用
收藏
页码:1520 / 1524
页数:5
相关论文
共 50 条
  • [1] Iterative neural networks for adaptive inference on resource-constrained devices
    Sam Leroux
    Tim Verbelen
    Pieter Simoens
    Bart Dhoedt
    Neural Computing and Applications, 2022, 34 : 10321 - 10336
  • [2] Iterative neural networks for adaptive inference on resource-constrained devices
    Leroux, Sam
    Verbelen, Tim
    Simoens, Pieter
    Dhoedt, Bart
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13): : 10321 - 10336
  • [3] Fully Distributed Deep Learning Inference on Resource-Constrained Edge Devices
    Stahl, Rafael
    Zhao, Zhuoran
    Mueller-Gritschneder, Daniel
    Gerstlauer, Andreas
    Schlichtmann, Ulf
    EMBEDDED COMPUTER SYSTEMS: ARCHITECTURES, MODELING, AND SIMULATION, SAMOS 2019, 2019, 11733 : 77 - 90
  • [4] DeeperThings: Fully Distributed CNN Inference on Resource-Constrained Edge Devices
    Stahl, Rafael
    Hoffman, Alexander
    Mueller-Gritschneder, Daniel
    Gerstlauer, Andreas
    Schlichtmann, Ulf
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2021, 49 (04) : 600 - 624
  • [5] DeeperThings: Fully Distributed CNN Inference on Resource-Constrained Edge Devices
    Rafael Stahl
    Alexander Hoffman
    Daniel Mueller-Gritschneder
    Andreas Gerstlauer
    Ulf Schlichtmann
    International Journal of Parallel Programming, 2021, 49 : 600 - 624
  • [6] FlexNN: Efficient and Adaptive DNN Inference on Memory-Constrained Edge Devices
    Li, Xiangyu
    Li, Yuanchun
    Li, Yuanzhe
    Cao, Ting
    Liu, Yunxin
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING, ACM MOBICOM 2024, 2024, : 709 - 723
  • [7] Efficient Parallel Split Learning Over Resource-Constrained Wireless Edge Networks
    Lin, Zheng
    Zhu, Guangyu
    Deng, Yiqin
    Chen, Xianhao
    Gao, Yue
    Huang, Kaibin
    Fang, Yuguang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9224 - 9239
  • [8] Efficient Acceleration of Deep Learning Inference on Resource-Constrained Edge Devices: A Review
    Shuvo, Md. Maruf Hossain
    Islam, Syed Kamrul
    Cheng, Jianlin
    Morshed, Bashir I.
    PROCEEDINGS OF THE IEEE, 2023, 111 (01) : 42 - 91
  • [9] Efficient Pipeline Collaborative DNN Inference in Resource-constrained UAV Swarm
    Ren, Weiqing
    Qu, Yuben
    Qin, Zhen
    Dong, Chao
    Zhou, Fuhui
    Zhang, Lei
    Wu, Qihui
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [10] ESFL: Efficient Split Federated Learning Over Resource-Constrained Heterogeneous Wireless Devices
    Zhu, Guangyu
    Deng, Yiqin
    Chen, Xianhao
    Zhang, Haixia
    Fang, Yuguang
    Wong, Tan F.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (16): : 27153 - 27166