Genome-wide analysis of UDP-glycosyltransferases family and identification of UGT genes involved in abiotic stress and flavonol biosynthesis in Nicotiana tabacum

被引:30
|
作者
Yang, Qing [1 ,2 ]
Zhang, Yinchao [1 ]
Qu, Xiaoling [1 ]
Wu, Fengyan [1 ]
Li, Xiuchun [1 ]
Ren, Min [1 ]
Tong, Ying [1 ]
Wu, Xiuming [1 ]
Yang, Aiguo [1 ]
Chen, Yong [3 ]
Chen, Shuai [1 ]
机构
[1] Chinese Acad Agr Sci, Tobacco Res Inst, Qingdao 266101, Peoples R China
[2] Qujing Tobacco Co Yunnan Prov, Qujing 655000, Peoples R China
[3] China Natl Tobacco Corp, Beijing 100045, Peoples R China
关键词
UDP-glycosyltransferase; Nicotiana tabacum; Expression pattern; Abiotic stress; Flavonol glucosides; FUNCTIONAL-CHARACTERIZATION; PHYLOGENETIC ANALYSIS; ANTHOCYANIN BIOSYNTHESIS; ACID HOMEOSTASIS; GLUCOSYLTRANSFERASE; EXPRESSION; TOLERANCE; PLANTS;
D O I
10.1186/s12870-023-04208-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BackgroundUridine disphosphate (UDP) glycosyltransferases (UGTs) act upon a huge variety of highly diverse and complex substrates, such as phytohormones and specialized metabolites, to regulate plant growth, development, disease resistance, and environmental interactions. However, a comprehensive investigation of UGT genes in tobacco has not been conducted.ResultsIn this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in Nicotiana tabacum. We predicted 276 NtUGT genes, which were classified into 18 major phylogenetic subgroups. The NtUGT genes were invariably distributed among all the 24 chromosomes with structural diversity in exon/intron structure, conserved motifs, and cis-acting elements of promoters. Three groups of proteins which involved in flavonoid biosynthesis, plant growth and development, transportation and modification were identified that interact with NtUGT proteins using the PPI analysis. Expression analysis of NtUGT genes in cold stress, drought stress and different flower color using both online RNA-Seq data and the realtime PCR analysis, suggested the distinct role of NtUGT genes in resistance of cold, drought and in flavonoid biosynthesis. The enzymatic activities of seven NtUGT proteins that potentially involved in flavonoid glycosylation were analyzed, and found that all seven exhibited activity on myricetin; six (NtUGT108, NtUGT123, NtUGT141, NtUGT155, NtUGT179, and NtUGT195) showed activity on cyanidin; and three (NtUGT108, NtUGT195, and NtUGT217) were active on the flavonol aglycones kaempferol and quercetin, which catalyzing the substrates (myricetin, cyanidin or flavonol) to form new products. We further investigated the enzymatic products and enzymatic properties of NtUGT108, NtUGT195, and NtUGT217, suggested their diverse enzymatic activity toward flavonol, and NtUGT217 showed the highest catalyzed efficient toward quercetin. Overexpression of NtUGT217 significantly increase the content levels of the quercetin-3-O-glucoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside in transgenic tobacco leaves.ConclusionWe identified 276 UGT genes in Nicotiana tabacum. Our study uncovered valuable information about the phylogenetic structure, distribution, genomic characters, expression patterns and enzymatic activity of NtUGT genes in tobacco. We further identified three NtUGT genes involved in flavonoid biosynthesis, and overexpressed NtUGT217 to validate its function in catalyze quercetin. The results provide key candidate NtUGT genes for future breeding of cold and drought resistance and for potential metabolic engineering of flavonoid compounds.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Genome-Wide Analysis of the PYL Gene Family and Identification of PYL Genes That Respond to Abiotic Stress in Brassica napus
    Di, Feifei
    Jian, Hongju
    Wang, Tengyue
    Chen, Xueping
    Ding, Yiran
    Du, Hai
    Lu, Kun
    Li, Jiana
    Liu, Liezhao
    GENES, 2018, 9 (03)
  • [42] Genome-Wide Identification and Expression Analysis of UBiA Family Genes Associated with Abiotic Stress in Sunflowers (Helianthus annuus L.)
    Sun, Mingzhe
    Cai, Maohong
    Zeng, Qinzong
    Han, Yuliang
    Zhang, Siqi
    Wang, Yingwei
    Xie, Qinyu
    Chen, Youheng
    Zeng, Youling
    Chen, Tao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [43] Genome-Wide Identification of GATA Family Genes in Phoebe bournei and Their Transcriptional Analysis under Abiotic Stresses
    Yin, Ziyuan
    Liao, Wenhai
    Li, Jingshu
    Pan, Jinxi
    Yang, Sijia
    Chen, Shipin
    Cao, Shijiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (12)
  • [44] Genome Wide Analysis of Family-1 UDP Glycosyltransferases in Populus trichocarpa Specifies Abiotic Stress Responsive Glycosylation Mechanisms
    Rehman, Hafiz Mamoon
    Khan, Uzair Muhammad
    Nawaz, Sehar
    Saleem, Fozia
    Ahmed, Nisar
    Rana, Iqrar Ahmad
    Atif, Rana Muhammad
    Shaheen, Nabeel
    Seo, Hyojin
    GENES, 2022, 13 (09)
  • [45] Genome-wide identification, phylogeny, and expression analysis of the bHLH gene family in tobacco (Nicotiana tabacum)
    Bano, Nasreen
    Patel, Preeti
    Chakrabarty, Debasis
    Bag, Sumit Kumar
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2021, 27 (08) : 1747 - 1764
  • [46] Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses
    Li, Donghua
    Liu, Pan
    Yu, Jingyin
    Wang, Linhai
    Dossa, Komivi
    Zhang, Yanxin
    Zhou, Rong
    Wei, Xin
    Zhang, Xiurong
    BMC PLANT BIOLOGY, 2017, 17
  • [47] Genome-wide analysis of the laccase gene family in Arachis hypogaea and functional characterization of AhLAC63 involved in lignin biosynthesis and abiotic stress
    Yao, Ruonan
    Liu, Yue
    Ouyang, Lei
    He, Dongli
    Yan, Liying
    Chen, Yuning
    Huai, Dongxin
    Wang, Zhihui
    Kang, Yanping
    Wang, Qianqian
    Jiang, Huifang
    Lei, Yong
    Liao, Boshou
    Wang, Xin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 289
  • [48] A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land
    Caputi, Lorenzo
    Malnoy, Mickael
    Goremykin, Vadim
    Nikiforova, Svetlana
    Martens, Stefan
    PLANT JOURNAL, 2012, 69 (06) : 1030 - 1042
  • [49] Genome-Wide Identification and Expression Profiling Analysis of the Xyloglucan Endotransglucosylase/Hydrolase Gene Family in Tobacco (Nicotiana tabacum L.)
    Wang, Meng
    Xu, Zongchang
    Ding, Anming
    Kong, Yingzhen
    GENES, 2018, 9 (06)
  • [50] Systematic study of the stress-responsive Rboh gene family in Nicotiana tabacum: Genome-wide identification, evolution and role in disease resistance
    Yu, Shizhou
    Kakar, Kaleem Ullah
    Yang, Zhixiao
    Nawaz, Zarqa
    Lin, Shifeng
    Guo, Yushuang
    Ren, Xue-liang
    Baloch, Akram Ali
    Han, Dejun
    GENOMICS, 2020, 112 (02) : 1404 - 1418