Improved electrochemical performance of P2-type concentration-gradient cathode material Na0.65Ni0.16Co0.14Mn0.7O2 with Mn-rich core for sodium-ion batteries

被引:7
|
作者
Gao, Nengshuang [1 ]
Guo, Yiwen [1 ]
Chen, Yuanhua [2 ,3 ]
Feng, Shuaiqiang [4 ]
Li, Hechen [1 ]
Sun, Ruicong [1 ]
Huang, Bin [1 ]
Zhong, Shengkui [3 ]
Chen, Quanqi [1 ,3 ]
机构
[1] Guilin Univ Technol, Coll Chem & Bioengn, Guangxi Key Lab Electrochem & Magnetochem Funct Ma, Guilin 541004, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China
[3] Guilin Univ Aerosp Technol, Sch Automobile Engn, Guilin 541004, Peoples R China
[4] Guilin Univ Technol, Coll Sci, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Concentration-gradient; Manganese-rich; P2-type; Sodium-ion batteries; POSITIVE ELECTRODE; HIGH-VOLTAGE; HIGH-ENERGY; CAPACITY; DECAY;
D O I
10.1016/j.jallcom.2023.170386
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The full concentration-gradient Na0.65Ni0.16Co0.14Mn0.7O2 (CG-NCM), in which the composition varies gradiently from core Na0.65Ni0.01Co0.01Mn0.98O2 to shell Na0.65Ni0.31Co0.27Mn0.42O2, was prepared by a coprecipitation method plus high-temperature calcination, and was investigated by XRD, SEM, TEM and electrochemical measurements. Benefiting from the special concentration-gradient core-shell structure, CG-NCM possesses higher diffusion coefficients of Na+ and the consequently better rate capability and cyclability than concentration-constant Na0.65Ni0.16Co0.14Mn0.7O2 (CC-NCM). Galvanostatically cycled at 30 mA g-1 between 1.5 and 4.1 V (vs Na+/Na), CC-NCM and CG-NCM have initial discharge capacities of 168.5 and 162.5 mA h g-1, and the capacity retentions of 11.5 % and 51.4 % after 100 cycles, respectively. CG-NCM presents high initial discharge capacities of 144.5, 138.2 and 121.8 mA h g-1 at 75, 300 and 750 mA g-1, respectively, and exhibits capacity retentions of 70.6 %, 73.2 % and 76.9 % after 100 cycles, respectively. However, CC-NCM shows initial discharge capacities of 149.5, 136.5 and 107.3 mA h g-1 at 75, 300 and 750 mA g-1, respectively, and the matching capacity retentions are as low as 49.8 %, 52.3 % and 53.9 %, respectively. The results indicate that the construction of concentration-gradient oxide electrode materials is an effective strategy for improvement of the electrochemical performance of oxides cathodes. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries
    Bao, Shuo
    Luo, Shao-hua
    Wang, Zhi-yuan
    Yan, Sheng-xue
    Wang, Qing
    Li, Jia-yu
    JOURNAL OF POWER SOURCES, 2018, 396 : 404 - 411
  • [2] Nanoscale surface modification of P2-type Na0.65[Mn0.70Ni0.16Co0.14]O2 cathode material for high-performance sodium-ion batteries
    Deng, Qiang
    Zheng, Fenghua
    Zhong, Wentao
    Pan, Qichang
    Liu, Yanzhen
    Li, Youpeng
    Li, Yijuan
    Hu, Junhua
    Yang, Chenghao
    Liu, Meilin
    CHEMICAL ENGINEERING JOURNAL, 2021, 404
  • [3] P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium-ion batteries
    Wang, Kai
    Wu, Zhen-Guo
    Zhang, Tao
    Deng, Ya-Ping
    Li, Jun-Tao
    Guo, Xiao-Dong
    Xu, Bin-Bin
    Zhong, Ben-He
    ELECTROCHIMICA ACTA, 2016, 216 : 51 - 57
  • [4] Layered P2-type Na0.5Ni0.25Mn0.75O2 as a high performance cathode material for sodium-ion batteries
    Manikandan, P.
    Ramasubramonian, D.
    Shaijumon, M. M.
    ELECTROCHIMICA ACTA, 2016, 206 : 199 - 206
  • [5] A study on electrochemical properties of P2-type Na-Mn-Co-Cr-O cathodes for sodium-ion batteries
    Wang, Yanzhi
    Tang, Jiantao
    Yang, Xiduo
    Huang, Weiwei
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (03): : 577 - 584
  • [6] Influence of Li substitution on the structure and electrochemical performance of P2-type Na0.67Ni0.2Fe0.15Mn0.65O2 cathode materials for sodium ion batteries
    Wang, Yong
    Hu, Guorong
    Peng, Zhongdong
    Cao, Yanbing
    Lai, Xiangwan
    Qi, Xianyue
    Gan, Zhanggen
    Li, Wei
    Luo, Zhongyuan
    Du, Ke
    JOURNAL OF POWER SOURCES, 2018, 396 : 639 - 647
  • [7] Ultrafine Mn-rich P2-type Na 0.67 Fe 0.1 Mn 0.9 O 2 particles via combustion synthesis as high-performance sodium-ion battery cathode
    Zhang, Qingtang
    Shu, Qiqi
    Lian, Fei
    Du, Chunyang
    Gao, Pengfei
    You, Ya
    JOURNAL OF ENERGY STORAGE, 2024, 87
  • [8] Optimizing electrochemical performance of Na0.67Ni0.17Co0.17Mn0.66O2 with P2 structure via preparing concentration-gradient particles for sodium-ion batteries
    Duan, Yu
    Ma, Zi-han
    Wan, Qing-xin
    Li, Min -min
    Huang, Ying-ying
    Li, Li-li
    Han, Xiao-heng
    Bao, Shuo
    Lu, Jin-lin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 662 : 69 - 75
  • [9] Na vacancies and Li doping synergistically constructed P2-type Na0.5Li0.1Ni0.2Mn0.7O2 as high-performance cathode material for sodium-ion batteries
    Zhang, Bo
    Xu, Shoudong
    Lu, Zhonghua
    Zhang, Zhitao
    Chen, Liang
    Zhang, Ding
    MATERIALS LETTERS, 2023, 350
  • [10] Outstanding Electrochemical Performance of Ni-Rich Concentration-Gradient Cathode Material LiNi0.9Co0.083Mn0.017O2 for Lithium-Ion Batteries
    Li, Hechen
    Guo, Yiwen
    Chen, Yuanhua
    Gao, Nengshuang
    Sun, Ruicong
    Lu, Yachun
    Chen, Quanqi
    MOLECULES, 2023, 28 (08):