Quantum Computing in the Next-Generation Computational Biology Landscape: From Protein Folding to Molecular Dynamics

被引:27
作者
Pal, Soumen [1 ]
Bhattacharya, Manojit [2 ]
Lee, Sang-Soo [3 ]
Chakraborty, Chiranjib [4 ]
机构
[1] Vellore Inst Technol, Sch Mech Engn, Vellore 632014, Tamil Nadu, India
[2] Fakir Mohan Univ, Dept Zool, Balasore 756020, Odisha, India
[3] Hallym Univ, Chuncheon Sacred Heart Hosp, Inst Skeletal Aging & Orthoped Surg, Chunchon 24252, Gangwon Do, South Korea
[4] Adamas Univ, Sch Life Sci & Biotechnol, Dept Biotechnol, Kolkata 700126, West Bengal, India
关键词
Quantum computing; Molecular biology; Simulation; Computational biology; DISCRETE LOGARITHMS; ALGORITHMS; SIMULATION; PROGRESS;
D O I
10.1007/s12033-023-00765-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Modern biological science is trying to solve the fundamental complex problems of molecular biology, which include protein folding, drug discovery, simulation of macromolecular structure, genome assembly, and many more. Currently, quantum computing (QC), a rapidly emerging technology exploiting quantum mechanical phenomena, has developed to address current significant physical, chemical, biological issues, and complex questions. The present review discusses quantum computing technology and its status in solving molecular biology problems, especially in the next-generation computational biology scenario. First, the article explained the basic concept of quantum computing, the functioning of quantum systems where information is stored as qubits, and data storage capacity using quantum gates. Second, the review discussed quantum computing components, such as quantum hardware, quantum processors, and quantum annealing. At the same time, article also discussed quantum algorithms, such as the grover search algorithm and discrete and factorization algorithms. Furthermore, the article discussed the different applications of quantum computing to understand the next-generation biological problems, such as simulation and modeling of biological macromolecules, computational biology problems, data analysis in bioinformatics, protein folding, molecular biology problems, modeling of gene regulatory networks, drug discovery and development, mechano-biology, and RNA folding. Finally, the article represented different probable prospects of quantum computing in molecular biology.
引用
收藏
页码:163 / 178
页数:16
相关论文
共 139 条
[1]   The power of quantum neural networks [J].
Abbas, Amira ;
Sutter, David ;
Zoufal, Christa ;
Lucchi, Aurelien ;
Figalli, Alessio ;
Woerner, Stefan .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06) :403-409
[2]  
Abdesslem L., 2006, 7 INT WORKSH PAR DIS, V2, P1
[3]  
Adedoyin A., 2018, ARXIV
[4]  
Alghassi H., 2019, QUANTUM QUANTUM INSP, V6, P845719
[5]   Quantum computing for chemical and biomolecular product design [J].
Andersson, Martin P. ;
Jones, Mark N. ;
Mikkelsen, Kurt, V ;
You, Fengqi ;
Mansouri, Seyed Soheil .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2022, 36
[6]  
[Anonymous], 2022, IQC OP GLOSS
[7]  
[Anonymous], 2011, NIPS DEEP LEARN UNS
[8]  
Anschuetz E.R., 2019, ARXIV
[9]  
Arunachalam S, 2020, PMLR, V119, P377
[10]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+