Compact Wideband Metamaterial Quadrature Coupler for 5G Beamforming Applications

被引:2
|
作者
Keriee, Hussam Hamid [1 ,2 ]
Rahim, Mohamad Kamal A. [1 ]
Nayyef, Nawres Abbas [3 ]
Ayop, Osman [1 ]
Al-Gburi, Ahmed Jamal Abdullah [4 ]
机构
[1] Univ Teknol Malaysia, Fac Engn, Sch Elect Engn, Adv RF & Microwave Res Grp ARFMRG, Utm Johor Bahru 81310, Johor, Malaysia
[2] Al Farahidi Univ, Coll Med Tech, Dept Med Instrumentat Engn Tech, Baghdad, Iraq
[3] Multimedia Univ, Fac Engn & Technol, Melaka, Malaysia
[4] Univ Teknikal Malaysia Melaka UTeM, Ctr Telecommun Res & Innovat CeTRI, Microwave Res Grp MRG, Fak Kejuruteraan Elekt & Kejuruteraan Komputer FKE, Hang Tuah Jaya 76100, Durian Tunggal, Malaysia
来源
PRZEGLAD ELEKTROTECHNICZNY | 2023年 / 99卷 / 03期
关键词
CRLH metamaterial; quadrature coupler; Beamforming; 5G; Wideband; BRANCH-LINE COUPLER; 4 BUTLER MATRIX; BANDWIDTH; FSS;
D O I
10.15199/48.2023.03.30
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A design of a compact wideband quadrature coupler based on metamaterial is presented at 3.5 GHz. The quadrature coupler is a significant component in beamforming networks with problems of narrow bandwidth and bulky size. The proposed quadrature coupler is designed with the implementation of composite right/left-handed (CRLH) arms metamaterial transmission line (TL). The metamaterial fingers are implemented in each branch section to reduce the size and improve the bandwidth. The proposed coupler is simulated using CST software and then fabricated on the FR4 substrate with (epsilon r=4.4 and h=1.6 mm). The coupler performance achieved a fractional bandwidth of 55.42% operated at 2.25 GHz to 4.19 GHz. The coupling factor at 3.5 GHz is-3 +/- 0.5 dB with a phase difference of 88.01 degrees. Compared to conventional BLC, the proposed coupler achieved a size reduction of 40.43%. The proposed coupler is suitable to be used in future 5G beamforming applications.
引用
收藏
页码:172 / 175
页数:4
相关论文
共 50 条
  • [31] A Compact, Ultra-Wideband, Transformer-Based Quadrature Signal Generation Network in 45 nm CMOS SOI for 5G Applications
    Zhu, Yuzhe
    Liu, Xuzhi
    Li, Xiaoran
    Liu, Zicheng
    Qi, Quanwen
    ELECTRONICS, 2022, 11 (16)
  • [32] A Substrate Intergrated Gap Waveguide Based Wideband 3-dB Coupler for 5G Applications
    Shen, Dongya
    Wang, Ke
    Zhang, Xiupu
    IEEE ACCESS, 2018, 6 : 66798 - 66806
  • [33] A Compact Ultra-Wideband Polarization-Insensitive Metamaterial Absorber at 5G Millimeter Wave Band
    Lei Xiaoyong
    Huo Shuyun
    Wang Mengjun
    Li Yan
    Li Erping
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [34] A Compact Mu-Near-Zero Metamaterial Integrated Wideband High-Gain MIMO Antenna for 5G New Radio Applications
    Hasan, Md. Mhedi
    Islam, Mohammad Tariqul
    Rahim, Sharul Kamal Abdul
    Alam, Touhidul
    Rmili, Hatem
    Alzamil, Ahmed
    Islam, Md. Shabiul
    Soliman, Mohamed S.
    MATERIALS, 2023, 16 (04)
  • [35] Calculating Beamforming Vectors for 5G System Applications
    Dmitriyev, Edgar
    Rogozhnikov, Eugeniy
    Duplishcheva, Natalia
    Novichkov, Serafim
    SYMMETRY-BASEL, 2021, 13 (12):
  • [36] 3-D Beamforming Wideband Antenna for 5G Application
    Kaushal, Shailendra
    Guan, Ning
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING), 2019, : 2279 - 2285
  • [37] New Design of Metamaterial Antenna for 5G Applications
    Labidi, Mondher
    Choubani, Fethi
    2019 IEEE 19TH MEDITERRANEAN MICROWAVE SYMPOSIUM (MMS 2019), 2019,
  • [38] A miniaturized metamaterial unit cell for 5G applications
    Sansa, Imen
    Nasri, Abdelkhalek
    Zairi, Hassen
    2019 IEEE 19TH MEDITERRANEAN MICROWAVE SYMPOSIUM (MMS 2019), 2019,
  • [39] Compact microstrip antenna with metamaterial for wideband applications
    Xiong, Han
    Hong, Jing-Song
    Tan, Ming-Tao
    Li, Bing
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2013, 21 : 2233 - 2238
  • [40] Compact wideband transparent antenna for 5G communication systems
    Desai, Arpan
    Upadhyaya, Trushit
    Patel, Riki
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2019, 61 (03) : 781 - 786