In-Sensor Artificial Intelligence and Fusion With Electronic Medical Records for At-Home Monitoring

被引:1
作者
Sadasivuni, Sudarsan [1 ]
Saha, Monjoy [2 ]
Bhanushali, Sumukh Prashant [3 ]
Banerjee, Imon [4 ]
Sanyal, Arindam [3 ]
机构
[1] Univ Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[2] NIH, Bethesda, MD 20814 USA
[3] Arizona State Univ, Sch Elect Comp Energy Engn, Tempe, AZ 85281 USA
[4] Mayo Clin, Phoenix, AZ 85054 USA
基金
美国国家科学基金会;
关键词
Sepsis; artificial intelligence; in-memory computing; data fusion; artificial neural network; reservoir-computer; COMPUTING SRAM MACRO; REAL-TIME; SEIZURE CLASSIFICATION; FRONT-END; ECG; SEPSIS; CMOS; SOC; PROCESSOR; ENGINE;
D O I
10.1109/TBCAS.2023.3251310
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This work presents an artificial intelligence (AI) framework for real-time, personalized sepsis prediction four hours before onset through fusion of electrocardiogram (ECG) and patient electronic medical record. An on-chip classifier combines analog reservoir-computer and artificial neural network to perform prediction without front-end data converter or feature extraction which reduces energy by 13x compared to digital baseline at normalized power efficiency of 528 TOPS/W, and reduces energy by 159x compared to RF transmission of all digitized ECG samples. The proposed AI framework predicts sepsis onset with 89.9% and 92.9% accuracy on patient data from Emory University Hospital and MIMIC-III respectively. The proposed framework is non-invasive and does not require lab tests which makes it suitable for at-home monitoring.
引用
收藏
页码:312 / 322
页数:11
相关论文
共 65 条
  • [1] Akmandor AO, 2018, IEEE CUST INTEGR CIR
  • [2] ECG Classification Algorithm Based on STDP and R-STDP Neural Networks for Real-Time Monitoring on Ultra Low-Power Personal Wearable Devices
    Amirshahi, Alireza
    Hashemi, Matin
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (06) : 1483 - 1493
  • [3] DFR: An Energy-efficient Analog Delay Feedback Reservoir Computing System for Brain-inspired Computing
    Bai, Kangjun
    Yi, Yang
    [J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2018, 14 (04)
  • [4] Real-Time Ultra-Low Power ECG Anomaly Detection Using an Event-Driven Neuromorphic Processor
    Bauer, Felix Christian
    Muir, Dylan Richard
    Indiveri, Giacomo
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (06) : 1575 - 1582
  • [5] Machine learning for early detection of sepsis: an internal and temporal validation study
    Bedoya, Armando D.
    Futoma, Joseph
    Clement, Meredith E.
    Corey, Kristin
    Brajer, Nathan
    Lin, Anthony
    Simons, Morgan G.
    Gao, Michael
    Nichols, Marshall
    Balu, Suresh
    Heller, Katherine
    Sendak, Mark
    O'Brien, Cara
    [J]. JAMIA OPEN, 2020, 3 (02) : 252 - 260
  • [6] Bin Altaf MA, 2013, ISSCC DIG TECH PAP I, V56, P100, DOI 10.1109/ISSCC.2013.6487654
  • [7] A 16-Channel Patient-Specific Seizure Onset and Termination Detection SoC With Impedance-Adaptive Transcranial Electrical Stimulator
    Bin Altaf, Muhammad Awais
    Zhang, Chen
    Yoo, Jerald
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (11) : 2728 - 2740
  • [8] Toward Real-Time, At-Home Patient Health Monitoring Using Reservoir Computing CMOS IC
    Chandrasekaran, Sanjeev Tannirkulam
    Bhanushali, Sumukh Prashant
    Banerjee, Imon
    Sanyal, Arindam
    [J]. IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2021, 11 (04) : 829 - 839
  • [9] Fully Integrated Analog Machine Learning Classifier Using Custom Activation Function for Low Resolution Image Classification
    Chandrasekaran, Sanjeev Tannirkulam
    Jayaraj, Akshay
    Karnam, Vinay Elkoori Ghantala
    Banerjee, Imon
    Sanyal, Arindam
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (03) : 1023 - 1033
  • [10] A Bio-Inspired Reservoir-Computer for Real-Time Stress Detection From ECG Signal
    Chandrasekaran, Sanjeev Tannirkulam
    Bhanushali, Sumukh Prashant
    Banerjee, Imon
    Sanyal, Arindam
    [J]. IEEE SOLID-STATE CIRCUITS LETTERS, 2020, 3 : 290 - 293