Retrieving leaf area index from FY-3D MERSI-II data using a sensor-adaptive algorithm

被引:4
作者
Chen, Yepei [1 ,2 ]
Li, Pengfei [1 ,6 ]
Xu, Chuan [1 ]
Song, Zhina [1 ]
Sun, Kaimin [3 ]
Li, Wenzhuo [3 ]
Hu, Xiuqing [4 ,5 ]
An, Qing [2 ]
机构
[1] Hubei Univ Technol, Sch Comp Sci, Wuhan, Peoples R China
[2] Wuchang Univ Technol, Sch Artificial Intelligence, Wuhan, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
[4] China Meteorol Adm, Key Lab Radiometr Calibrat & Validat Environm Sate, Beijing, Peoples R China
[5] China Meteorol Adm, Natl Satellite Meteorol Ctr, Beijing, Peoples R China
[6] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Peoples R China
基金
中国国家自然科学基金;
关键词
leaf area index (LAI); MEdium Resolution Spectral Imager (MERSI-II); sensor-adaptive algorithm; Moderate Resolution Imaging Spectroradiometer (MODIS); parametric optimization; evaluation; ESSENTIAL CLIMATE VARIABLES; CYCLOPES GLOBAL PRODUCTS; TIME-SERIES; LAI PRODUCT; GEOV1; LAI; PART; VALIDATION; MODIS; VEGETATION; FAPAR;
D O I
10.1080/01431161.2023.2201383
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Leaf area index (LAI), officially listed as one of essential climate variables, quantifies the structure and amount of vegetation and characterizes the interaction between vegetation and climate. The advanced MEdium Resolution Spectral Imager (MERSI-II) onboard FengYun-3D (FY-3D) can provide twice-daily global observations of earth at a spatial resolution of 250 m. Therefore, it has great potential for promoting the improvement of global LAI products and boosting the development of earth system modelling. However, the existing methods are mostly sensor-specific, they can not be directly applied to MERSI-II data for LAI generation. In this paper, we proposed a sensor-adaptive approach for LAI estimation based on MERSI-II observations. This method is composed of an LAI retrieval look-up table based on radiative transfer theory, which was calibrated by a global optimizing algorithm to adapt MERSI-II characteristics, and a backup algorithm training neural networks with MERSI-II Normalized Difference Vegetation Index (NDVI) and Moderate Resolution Imaging Spectroradiometer (MODIS) LAI. We evaluated the MERSI-II LAI retrievals by intercomparison to MODIS products over mainland China and direct validation using ground-based upscaled LAI reference maps. The assessments demonstrate that (1) the derived MERSI-II LAI products agree well with the MODIS benchmarks in both spatial and temporal respects; (2) compared to the MODIS LAI, the MERSI-II LAI retrievals with less gaps show great potential in improving spatiotemporal continuity; (3) validation versus in-situ measurements reveals acceptable accuracy of the MERSI-II LAI products with a R-2 of 0.85 and RMSE of 0.82; (4) the proposed parametric optimization strategy could successfully transplant MODIS LAI algorithm to MERSI-II data.
引用
收藏
页码:2317 / 2341
页数:25
相关论文
共 48 条
[1]   GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production [J].
Baret, F. ;
Weiss, M. ;
Lacaze, R. ;
Camacho, F. ;
Makhmara, H. ;
Pacholcyzk, P. ;
Smets, B. .
REMOTE SENSING OF ENVIRONMENT, 2013, 137 :299-309
[2]  
Baret F., 2005, Remote Sensing of Environment, V76, P36
[3]   LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION -: Part 1:: Principles of the algorithm [J].
Baret, Frederic ;
Hagolle, Olivier ;
Geiger, Bernhard ;
Bicheron, Patrice ;
Miras, Bastien ;
Huc, Mireille ;
Berthelot, Beatrice ;
Nino, Fernando ;
Weiss, Marie ;
Samain, Olivier ;
Roujean, Jean Louis ;
Leroy, Marc .
REMOTE SENSING OF ENVIRONMENT, 2007, 110 (03) :275-286
[4]   Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: Proposition of the CEOS-BELMANIP [J].
Baret, Frederic ;
Morissette, Jeffrey T. ;
Fernandes, Richard A. ;
Champeaux, J. L. ;
Myneni, Ranga B. ;
Chen, J. ;
Plummer, Stephen ;
Weiss, M. ;
Bacour, C. ;
Garrigues, Sebastien ;
Nickeson, Jamie E. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (07) :1794-1803
[5]   Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using Copernicus Ground Based Observations for Validation data [J].
Brown, Luke A. ;
Meier, Courtney ;
Morris, Harry ;
Pastor-Guzman, Julio ;
Bai, Gabriele ;
Lerebourg, Christophe ;
Gobron, Nadine ;
Lanconelli, Christian ;
Clerici, Marco ;
Dash, Jadunandan .
REMOTE SENSING OF ENVIRONMENT, 2020, 247
[6]   GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products [J].
Camacho, Fernando ;
Cemicharo, Jesus ;
Lacaze, Roselyne ;
Baret, Frederic ;
Weiss, Marie .
REMOTE SENSING OF ENVIRONMENT, 2013, 137 :310-329
[7]   China and India lead in greening of the world through land-use management [J].
Chen, Chi ;
Park, Taejin ;
Wang, Xuhui ;
Piao, Shilong ;
Xu, Baodong ;
Chaturvedi, Rajiv K. ;
Fuchs, Richard ;
Brovkin, Victor ;
Ciais, Philippe ;
Fensholt, Rasmus ;
Tommervik, Hans ;
Bala, Govindasamy ;
Zhu, Zaichun ;
Nemani, Ramakrishna R. ;
Myneni, Ranga B. .
NATURE SUSTAINABILITY, 2019, 2 (02) :122-129
[8]   DEFINING LEAF-AREA INDEX FOR NON-FLAT LEAVES [J].
CHEN, JM ;
BLACK, TA .
PLANT CELL AND ENVIRONMENT, 1992, 15 (04) :421-429
[9]   Prototyping of LAI and FPAR Retrievals From GOES-16 Advanced Baseline Imager Data Using Global Optimizing Algorithm [J].
Chen, Yepei ;
Sun, Kaimin ;
Li, Wenzhuo ;
Chen, Chi ;
Li, Pengfei ;
Bai, Ting ;
Park, Taejin ;
Wang, Weile ;
Nemani, Ramakrishna R. ;
Myneni, Ranga B. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :6937-6950
[10]   Generation and Evaluation of LAI and FPAR Products from Himawari-8 Advanced Himawari Imager (AHI) Data [J].
Chen, Yepei ;
Sun, Kaimin ;
Chen, Chi ;
Bai, Ting ;
Park, Taejin ;
Wang, Weile ;
Nemani, Ramakrishna R. ;
Myneni, Ranga B. .
REMOTE SENSING, 2019, 11 (13)