Syntomic complexes and p-adic etale Tate twists

被引:1
作者
Bhatt, Bhargav [1 ]
Mathew, Akhil [2 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[2] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
关键词
14F30; 14F42; RHAM-WITT COMPLEX; K-THEORY; TOPOLOGICAL HOCHSCHILD; COHOMOLOGY; HOMOLOGY; QUILLEN;
D O I
10.1017/fmp.2022.21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The primary goal of this paper is to identify syntomic complexes with the p-adic etale Tate twists of Geisser-Sato-Schneider on regular p-torsion-free schemes. Our methods apply naturally to a broader class of schemes that we call 'F-smooth'. The F-smoothness of regular schemes leads to new results on the absolute prismatic cohomology of regular schemes.
引用
收藏
页数:26
相关论文
共 50 条
[21]   Picard groups in p-adic Fourier theory [J].
Schmidt, Tobias .
MANUSCRIPTA MATHEMATICA, 2014, 144 (1-2) :1-23
[22]   p-adic estimates of exponential sums on curves [J].
Kramer-Miller, Joe .
ALGEBRA & NUMBER THEORY, 2021, 15 (01) :141-171
[23]   On the cohomology of integral p-adic unipotent radicals [J].
Ronchetti, Niccolo .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (10) :4186-4213
[24]   Hodge theory of p-adic varieties: a survey [J].
Niziol, Wieslawa .
ANNALES POLONICI MATHEMATICI, 2021, 127 (1-2) :63-86
[25]   On the p-adic Beilinson Conjecture for Number Fields [J].
Besser, A. ;
Buckingham, P. ;
de Jeu, R. ;
Roblot, X. -F. .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2009, 5 (01) :375-434
[26]   Integral p-adic Hodge theory - announcement [J].
Bhatt, B. ;
Morrow, M. ;
Scholze, P. .
MATHEMATICAL RESEARCH LETTERS, 2015, 22 (06) :1601-1612
[27]   OPERATOR ALGEBRAS OVER THE p-ADIC INTEGERS [J].
Buss, Alcides ;
Garcia, Luiz felipe ;
Mukherjee, Devarshi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025,
[28]   PRODUCT FORMULA FOR p-ADIC EPSILON FACTORS [J].
Abe, Tomoyuki ;
Marmora, Adrian .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2015, 14 (02) :275-377
[29]   Families of Bianchi modular symbols: critical base-change p-adic L-functions and p-adic Artin formalism [J].
Barrera Salazar, Daniel ;
Williams, Chris .
SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (05)
[30]   On p-adic uniformization of abelian varieties with good reduction [J].
Iovita, Adrian ;
Morrow, Jackson S. ;
Zaharescu, Alexandru .
COMPOSITIO MATHEMATICA, 2022, 158 (07) :1449-1476