Syntomic complexes and p-adic etale Tate twists

被引:1
|
作者
Bhatt, Bhargav [1 ]
Mathew, Akhil [2 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[2] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
来源
FORUM OF MATHEMATICS PI | 2023年 / 11卷
关键词
14F30; 14F42; RHAM-WITT COMPLEX; K-THEORY; TOPOLOGICAL HOCHSCHILD; COHOMOLOGY; HOMOLOGY; QUILLEN;
D O I
10.1017/fmp.2022.21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The primary goal of this paper is to identify syntomic complexes with the p-adic etale Tate twists of Geisser-Sato-Schneider on regular p-torsion-free schemes. Our methods apply naturally to a broader class of schemes that we call 'F-smooth'. The F-smoothness of regular schemes leads to new results on the absolute prismatic cohomology of regular schemes.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] p-adic etale Tate twists and arithmetic duality
    Sato, Kanetomo
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (04): : 519 - 588
  • [2] Cycle Classes for p-Adic Etale Tate twists and The Image of p-Adic Regulators
    Sato, Kanetomo
    DOCUMENTA MATHEMATICA, 2013, 18 : 177 - 247
  • [3] Syntomic complexes and p-adic nearby cycles
    Colmez, Pierre
    Niziol, Wieslawa
    INVENTIONES MATHEMATICAE, 2017, 208 (01) : 1 - 108
  • [4] New p-adic hypergeometric functions and syntomic regulators
    Asakura, Masanori
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (02): : 393 - 451
  • [5] On p-adic absolute Hodge cohomology and syntomic coefficients. I
    Deglise, Frederic
    Niziol, Wieslawa
    COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (01) : 71 - 131
  • [6] p-ADIC ELLIPTIC POLYLOGARITHM, p-ADIC EISENSTEIN SERIES AND KATZ MEASURE
    Bannai, Kenichi
    Kings, Guido
    AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (06) : 1609 - 1654
  • [7] On uniqueness of p-adic period morphisms, II
    Niziol, Wieslawa
    COMPOSITIO MATHEMATICA, 2020, 156 (09) : 1915 - 1964
  • [8] Plectic p-adic invariants
    Fornea, Michele
    Guitart, Xavier
    Masdeu, Marc
    ADVANCES IN MATHEMATICS, 2022, 406
  • [9] p-adic deformation of algebraic cycle classes
    Bloch, Spencer
    Esnault, Helene
    Kerz, Moritz
    INVENTIONES MATHEMATICAE, 2014, 195 (03) : 673 - 722
  • [10] A constructive approach to p-adic deformations of arithmetic homology
    Ash, Avner
    ACTA ARITHMETICA, 2011, 149 (04) : 305 - 319