Unsupervised learning with a physics-based autoencoder for estimating the thickness and mixing ratio of pigments

被引:5
|
作者
Shitomi, Ryuta [1 ]
Tsuji, Mayuka [1 ]
Fujimura, Yuki [1 ]
Funatomi, Takuya [1 ]
Mukaigawa, Yasuhiro [1 ]
Morimoto, Tetsuro [2 ]
Oishi, Takeshi [2 ]
Takamatsu, Jun [3 ]
Ikeuchi, Katsushi [3 ]
机构
[1] Nara Inst Sci & Technol NAIST, Grad Sch Sci & Technol, 8916-5 Takayama, Ikoma, Nara 6300192, Japan
[2] Univ Tokyo, Inst Ind Sci, 4-6-1 Komaba,Meguro Ku, Tokyo 1530041, Japan
[3] Microsoft, One Microsoft Way, Redmond, WA 98052 USA
关键词
Compendex;
D O I
10.1364/JOSAA.472775
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Layered surface objects represented by decorated tomb murals and watercolors are in danger of deterioration and damage. To address these dangers, it is necessary to analyze the pigments' thickness and mixing ratio and record the current status. This paper proposes an unsupervised autoencoder model for thickness and mixing ratio estimation. The input of our autoencoder is spectral data of layered surface objects. Our autoencoder is unique, to our knowledge, in that the decoder part uses a physical model, the Kubelka-Munk model. Since we use the Kubelka-Munk model for the decoder, latent variables in the middle layer can be interpretable as the pigment thickness and mixing ratio. We conducted a quantitative evaluation using synthetic data and confirmed that our autoencoder provides a highly accurate estimation. We measured an object with layered surface pigments for qualitative evaluation and confirmed that our method is valid in an actual environment. We also present the superiority of our unsupervised autoencoder over supervised learning. (c) 2022 Optica Publishing Group
引用
收藏
页码:116 / 128
页数:13
相关论文
empty
未找到相关数据