High-capacity polysulfide-polyiodide nonaqueous redox flow batteries with a ceramic membrane

被引:3
作者
Chen, Mao [1 ]
Chen, Hongning [1 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Chem Hybrid Energy Novel Lab, Shenzhen 518055, Guangdong, Peoples R China
来源
NANOSCALE ADVANCES | 2023年 / 5卷 / 02期
基金
中国国家自然科学基金;
关键词
HIGH-ENERGY-DENSITY; ANOLYTE MATERIALS; SULFUR; ELECTROLYTES; SUSPENSION; REDUCTION; PROGRESS;
D O I
10.1039/d2na00792d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nonaqueous redox flow batteries (NRFBs) have been regarded as promising large-scale electrochemical energy storage technology due to the wider solvent stable potential windows and greater selection of materials. However, the application of NRFBs is greatly limited considering the low capacity and high cost of active materials. In this work, we design and demonstrate a high-capacity polysulfide (PS)-polyiodide (PI) NRFB in Li-ion based 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) (v/v similar to 1 : 1) organic electrolyte. The high solubility and low cost of PS (5 M) and PI (4 M) can achieve the high capacity and high applicability of NRFBs, which is attractive for realizing large-scale stationary energy storage. The highest volumetric capacity of 28 Ah L-1 based on a full cell is achieved with 1.5 M PS-4 M PI. The high coulombic efficiency (similar to 100%) and capacity retention (>99%) for 100 cycles in the PS-PI system is demonstrated by using a Li-ion conducting ceramic membrane. Voltage control is applied for both PS and PI to avoid the formation of irreversible solid Li2S and I-2, which ensures the high stability of battery reaction. In situ UV-vis spectroscopy reveals the high reversibility of PS and PI in DOL/DME. A continuous flow mode test of the PS-PI system is also demonstrated to realize >300 hours stable cycling performance which implies good applicability for a long-term process. The successful demonstration of this high-capacity PS-PI nonaqueous system provides a new direction to promote the application of NRFBs in more fields.
引用
收藏
页码:435 / 442
页数:8
相关论文
共 69 条
[1]   Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures [J].
Ai, Fei ;
Wang, Zengyue ;
Lai, Nien-Chu ;
Zou, Qingli ;
Liang, Zhuojian ;
Lu, Yi-Chun .
NATURE ENERGY, 2022, 7 (05) :417-426
[2]   An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery [J].
Brushett, Fikile R. ;
Vaughey, John T. ;
Jansen, Andrew N. .
ADVANCED ENERGY MATERIALS, 2012, 2 (11) :1390-1396
[3]   Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes [J].
Chen, Hongning ;
Cong, Guangtao ;
Lu, Yi-Chun .
JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (05) :1304-1325
[4]   Lithium Organic Nanocomposite Suspension for High-Energy-Density Redox Flow Batteries [J].
Chen, Hongning ;
Zhou, Yucun ;
Lu, Yi-Chun .
ACS ENERGY LETTERS, 2018, 3 (08) :1991-1997
[5]   Silicon-Carbon Nanocomposite Semi-Solid Negolyte and Its Application in Redox Flow Batteries [J].
Chen, Hongning ;
Lai, Nien-Chu ;
Lu, Yi-Chun .
CHEMISTRY OF MATERIALS, 2017, 29 (17) :7533-7542
[6]   A High-Energy-Density Multiple Redox Semi-Solid-Liquid Flow Battery [J].
Chen, Hongning ;
Lu, Yi-Chun .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[7]   Organic Electrolytes for pH-Neutral Aqueous Organic Redox Flow Batteries [J].
Chen, Qianru ;
Lv, Yangguang ;
Yuan, Zhizhang ;
Li, Xianfeng ;
Yu, Guihua ;
Yang, Zhengjin ;
Xu, Tongwen .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (09)
[8]   Enhancing the Thermal Stability of NASICON Solid Electrolyte Pellets against Metallic Lithium by Defect Modification [J].
Chen, Rusong ;
Yao, Chunxia ;
Yang, Qi ;
Pan, Hongyi ;
Yu, Xiqian ;
Zhang, Kai ;
Li, Hong .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (16) :18743-18749
[9]   Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries [J].
DeBruler, Camden ;
Hu, Bo ;
Moss, Jared ;
Liu, Xuan ;
Luo, Jian ;
Sun, Yujie ;
Liu, T. Leo .
CHEM, 2017, 3 (06) :961-978
[10]   A high-performance all-metallocene-based, non-aqueous redox flow battery [J].
Ding, Yu ;
Zhao, Yu ;
Li, Yutao ;
Goodenough, John B. ;
Yu, Guihua .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) :491-497