A Composite Likelihood-Based Approach for Change-Point Detection in Spatio-Temporal Processes

被引:1
|
作者
Zhao, Zifeng [1 ]
Ma, Ting Fung [2 ]
Ng, Wai Leong [3 ]
Yau, Chun Yip [4 ]
机构
[1] Univ Notre Dame, Notre Dame, IN USA
[2] Univ South Carolina, Columbia, SC USA
[3] Hang Seng Univ Hong Kong, Shatin, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Dynamic programming; Increasing domain asymptotics; Infill asymptotics; Pairwise likelihood; Multiple change-points; TIME-SERIES; BREAK DETECTION; MODEL; SPACE; SEGMENTATION; INFERENCE;
D O I
10.1080/01621459.2024.2302200
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article develops a unified and computationally efficient method for change-point estimation along the time dimension in a nonstationary spatio-temporal process. By modeling a nonstationary spatio-temporal process as a piecewise stationary spatio-temporal process, we consider simultaneous estimation of the number and locations of change-points, and model parameters in each segment. A composite likelihood-based criterion is developed for change-point and parameter estimation. Under the framework of increasing domain asymptotics, theoretical results including consistency and distribution of the estimators are derived under mild conditions. In contrast to classical results in fixed dimensional time series that the localization error of change-point estimator is O-p(1), exact recovery of true change-points is possible in the spatio-temporal setting. More surprisingly, the consistency of change-point estimation can be achieved without any penalty term in the criterion function. In addition, we further establish consistency of the change-point estimator under the infill asymptotics framework where the time domain is increasing while the spatial sampling domain is fixed. A computationally efficient pruned dynamic programming algorithm is developed for the challenging criterion optimization problem. Extensive simulation studies and an application to the U.S. precipitation data are provided to demonstrate the effectiveness and practicality of the proposed method. Supplementary materials for this article are available online.
引用
收藏
页码:3086 / 3100
页数:15
相关论文
共 50 条
  • [1] Spatio-Temporal Interpolation of CO Concentration using a Likelihood-Based Method
    Rivaz, Firoozeh
    Environmental Science and Technology, Pt 1, 2011, 6 : VI290 - VI292
  • [2] A pairwise likelihood-based approach for changepoint detection in multivariate time series models
    Ma, Ting Fung
    Yau, Chun Yip
    BIOMETRIKA, 2016, 103 (02) : 409 - 421
  • [3] Likelihood-Based Inference and Prediction in Spatio-Temporal Panel Count Models for Urban Crimes
    Liesenfeld, Roman
    Richard, Jean-Francois
    Vogler, Jan
    JOURNAL OF APPLIED ECONOMETRICS, 2017, 32 (03) : 600 - 620
  • [4] Spatio-temporal Diffusion Point Processes
    Yuan, Yuan
    Ding, Jingtao
    Shao, Chenyang
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3173 - 3184
  • [5] LANDSLIDE CHANGE DETECTION BASED ON SPATIO-TEMPORAL CONTEXT
    Huang Qingqing
    Meng Yu
    Chen Jingbo
    Yue Anzhi
    Lin Lei
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1095 - 1098
  • [6] SEQUENTIAL CHANGE-POINT DETECTION IN TIME SERIES MODELS BASED ON PAIRWISE LIKELIHOOD
    Leung, Sze Him
    Ng, Wai Leong
    Yau, Chun Yip
    STATISTICA SINICA, 2017, 27 (02) : 575 - 605
  • [7] Nonparametric CUSUM change-point detection procedures based on modified empirical likelihood
    Wang, Peiyao
    Ning, Wei
    COMPUTATIONAL STATISTICS, 2025,
  • [8] NONPARAMETRIC MAXIMUM LIKELIHOOD APPROACH TO MULTIPLE CHANGE-POINT PROBLEMS
    Zou, Changliang
    Yin, Guosheng
    Feng, Long
    Wang, Zhaojun
    ANNALS OF STATISTICS, 2014, 42 (03) : 970 - 1002
  • [9] Larval fish abundance classification and modeling through spatio-temporal point processes approach
    Lo Galbo, Giada
    Adelfio, Giada
    Cuttitta, Angela
    Patti, Bernardo
    Torri, Marco
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2025, : 461 - 493
  • [10] Rank-based multiple change-point detection
    Wang, Yunlong
    Wang, Zhaojun
    Zi, Xuemin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (14) : 3438 - 3454