Lower semicontinuity and relaxation for free discontinuity functionals with non-standard growth

被引:5
作者
Almi, Stefano [1 ]
Reggiani, Dario [2 ]
Solombrino, Francesco [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Univ Napoli Federico II, Scuola Super Meridionale, Largo San Marcellino 10, I-80138 Naples, Italy
基金
奥地利科学基金会;
关键词
49J45; 46E30; 49M20; QUASI-CONVEX INTEGRALS; VARIABLE EXPONENT; MULTIPLE INTEGRALS; GAMMA-CONVERGENCE; GLOBAL METHOD; REGULARITY; MINIMIZERS; EXISTENCE; GRADIENT; SBV;
D O I
10.1007/s00526-023-02623-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A lower semicontinuity result and a relaxation formula for free discontinuity functionals with non-standard growth in the bulk energy are provided. Our analysis is based on a non-trivial adaptation of the blow-up (Ambrosio in Nonlinear Anal 23:405-425, 1994) and of the global method for relaxation (Bouchitte in Arch Ration Mech Anal 165:187-242, 2002) to the setting of generalized special function of bounded variation with Orlicz growth. Key tools developed in this paper are an integral representation result and a Poincare inequality under non-standard growth.
引用
收藏
页数:58
相关论文
共 70 条
[1]   Relaxation of convex functional:: The gap problem [J].
Acerbi, E ;
Bouchitté, G ;
Fonseca, I .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03) :359-390
[2]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[3]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[4]  
Acerbi E., 2001, ANN SCUOLA NORM-SCI, V30, P311
[5]   ON OPTIMIZATION PROBLEMS WITH PRESCRIBED REARRANGEMENTS [J].
ALVINO, A ;
TROMBETTI, G ;
LIONS, PL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (02) :185-220
[6]  
AMBROSIO L, 1989, B UNIONE MAT ITAL, V3B, P857
[7]  
AMBROSIO L, 1995, CALC VAR PARTIAL DIF, V3, P127
[8]   EXISTENCE THEORY FOR A NEW CLASS OF VARIATIONAL-PROBLEMS [J].
AMBROSIO, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (04) :291-322
[9]   ON THE LOWER SEMICONTINUITY OF QUASI-CONVEX INTEGRALS IN SBV(OMEGA, R(K)) [J].
AMBROSIO, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (03) :405-425
[10]  
Ambrosio L., 2000, OX MATH M, pxviii