Rigidity of Willmore submanifolds and extremal submanifolds in the unit sphere

被引:0
|
作者
Yang, Deng-Yun [1 ]
Fu, Hai-Ping [2 ]
Zhang, Jin-Guo [1 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Peoples R China
[2] Nanchang Univ, Dept Math, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
Willmore submanifold; Sobolev inequality; Integral Ricci curvature; Extremal submanifold; SURFACES; THEOREM; CURVATURE;
D O I
10.1007/s00013-023-01893-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an n-dimensional (n = 4) compact Willmore (or extremal) submanifold in the unit sphere Sn+p. Denote by Ric and H the Ricci curvature and the mean curvature of M, respectively. It is proved that if (?(M) (Ric(?)-) (n)/(2)) (2)/(n) < A(n, ?, H, ?) (or B(n, ?, H, ?)), then M is a totally umbilical sphere, where A(n, ?, H, ?) and B(n, ?, H, ?) are two explicit positive constants depending on n, ?, H, and ?. This extends parts of the results from a pointwise Ricci curvature lower bound to an integral Ricci curvature lower bound.
引用
收藏
页码:329 / 342
页数:14
相关论文
共 50 条