Ionomer-free and recyclable porous-transport electrode for high-performing proton-exchange-membrane water electrolysis

被引:53
|
作者
Lee, Jason K. K. [1 ]
Anderson, Grace [1 ,2 ]
Tricker, Andrew W. [1 ]
Babbe, Finn [1 ]
Madan, Arya [2 ]
Cullen, David A. [3 ]
Arregui-Mena, Jose' D. [3 ]
Danilovic, Nemanja [1 ]
Mukundan, Rangachary [1 ]
Weber, Adam Z. [1 ]
Peng, Xiong [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
关键词
OXYGEN REDUCTION; CATALYST; CELLS; STABILITY; HYDROGEN; COST;
D O I
10.1038/s41467-023-40375-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clean hydrogen production requires large-scale deployment of water-electrolysis technologies, particularly proton-exchange-membrane water electrolyzers (PEMWEs). However, as iridium-based electrocatalysts remain the only practical option for PEMWEs, their low abundance will become a bottleneck for a sustainable hydrogen economy. Herein, we propose high-performing and durable ionomer-free porous transport electrodes (PTEs) with facile recycling features enabling Ir thrifting and reclamation. The ionomer-free porous transport electrodes offer a practical pathway to investigate the role of ionomer in the catalyst layer and, from microelectrode measurements, point to an ionomer poisoning effect for the oxygen evolution reaction. The ionomer-free porous transport electrodes demonstrate a voltage reduction of > 600 mV compared to conventional ionomer-coated porous transport electrodes at 1.8 A cm(-2) and <0.1 mg(Ir) cm(-2), and a voltage degradation of 29 mV at average rate of 0.58 mV per 1000-cycles after 50k cycles of accelerated-stress tests at 4 A cm(-2). Moreover, the ionomer-free feature enables facile recycling of multiple components of PEMWEs, which is critical to a circular clean hydrogen economy. The supply of iridium is likely to become a bottleneck for hydrogen production. Here, authors develop ionomer-free porous transport electrodes with low iridium loading designed to improve manufacturability and recyclability of electrodes for proton exchange membrane water electrolyzers.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] High-performance porous transport layers for proton exchange membrane water electrolyzers
    Tao, Youkun
    Wu, Minhua
    Hu, Meiqi
    Xu, Xihua
    Abdullah, Muhammad I.
    Shao, Jing
    Wang, Haijiang
    SUSMAT, 2024, 4 (04):
  • [42] High-performance proton-exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer
    Park, Ji Eun
    Kim, Junghwan
    Han, Jusung
    Kim, Kihyun
    Park, SungBin
    Kim, Sungjun
    Park, Hyun S.
    Cho, Yong-Hun
    Lee, Jong-Chan
    Sung, Yung-Eun
    JOURNAL OF MEMBRANE SCIENCE, 2021, 620
  • [43] Influence and Improvement of Membrane Electrode Assembly Fabrication Methods for Proton Exchange Membrane Water Electrolysis
    Yan, Xiaohui
    Li, Jiazhen
    Yuan, Shu
    Zhao, Congfan
    Fu, Cehuang
    Shen, Shuiyun
    Yin, Jiewei
    Zhang, Junliang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (06)
  • [44] Research progress of membrane electrode assembly of proton exchange membrane water electrolysis for hydrogen production
    Wan, Nianfang
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (12): : 6358 - 6394
  • [45] A gradient porous transport layer enabling a high-performance proton-exchange membrane electrolysis cell
    Tang, Yinglun
    Su, Shangchun
    Niu, Xiaoxuan
    Song, Zhehui
    Li, Wenjia
    RENEWABLE ENERGY, 2024, 237
  • [46] Numerical study on oxygen transport pattern in porous transport layer of proton exchange membrane electrolysis cells
    Li, Qingyu
    Bao, Cheng
    Jiang, Zeyi
    Zhang, Xinxin
    Ding, Tiexin
    Fang, Chuan
    Ouyang, Minggao
    ETRANSPORTATION, 2023, 15
  • [47] High-Stability RuO2/MoO3 Electrocatalyst for the Oxygen Evolution Reaction in Proton-Exchange-Membrane Water Electrolysis
    Ren, Wenqing
    Wang, Kaixin
    Lu, Dan
    Xu, Chenxi
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (24) : 12573 - 12578
  • [48] Porous transport electrodes for oxygen evolution reaction in proton exchange membrane water electrolysis -cells: Materials, designs, and diagnoses
    Cho, Jaewoo
    Doan, Tuan Linh
    Lee, Sangjun
    Kim, In Gyeom
    Jang, Segeun
    Shao, Yuyan
    Kim, Taekeun
    Park, Sehkyu
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [49] Mathematical modeling of novel porous transport layer architectures for proton exchange membrane electrolysis cells
    Wrubel, Jacob A.
    Kang, Zhenye
    Witteman, Liam
    Zhang, Feng-Yuan
    Ma, Zhiwen
    Bender, Guido
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (50) : 25341 - 25354
  • [50] Overcoming the Limitation of Ionomers on Mass Transport and Pt Activity to Achieve High-Performing Membrane Electrode Assembly
    Chen, Fadong
    Guo, Lin
    Long, Daojun
    Luo, Shijian
    Song, Yang
    Wang, Meng
    Li, Li
    Chen, Siguo
    Wei, Zidong
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (44) : 30388 - 30396