Ionomer-free and recyclable porous-transport electrode for high-performing proton-exchange-membrane water electrolysis

被引:53
|
作者
Lee, Jason K. K. [1 ]
Anderson, Grace [1 ,2 ]
Tricker, Andrew W. [1 ]
Babbe, Finn [1 ]
Madan, Arya [2 ]
Cullen, David A. [3 ]
Arregui-Mena, Jose' D. [3 ]
Danilovic, Nemanja [1 ]
Mukundan, Rangachary [1 ]
Weber, Adam Z. [1 ]
Peng, Xiong [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
关键词
OXYGEN REDUCTION; CATALYST; CELLS; STABILITY; HYDROGEN; COST;
D O I
10.1038/s41467-023-40375-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clean hydrogen production requires large-scale deployment of water-electrolysis technologies, particularly proton-exchange-membrane water electrolyzers (PEMWEs). However, as iridium-based electrocatalysts remain the only practical option for PEMWEs, their low abundance will become a bottleneck for a sustainable hydrogen economy. Herein, we propose high-performing and durable ionomer-free porous transport electrodes (PTEs) with facile recycling features enabling Ir thrifting and reclamation. The ionomer-free porous transport electrodes offer a practical pathway to investigate the role of ionomer in the catalyst layer and, from microelectrode measurements, point to an ionomer poisoning effect for the oxygen evolution reaction. The ionomer-free porous transport electrodes demonstrate a voltage reduction of > 600 mV compared to conventional ionomer-coated porous transport electrodes at 1.8 A cm(-2) and <0.1 mg(Ir) cm(-2), and a voltage degradation of 29 mV at average rate of 0.58 mV per 1000-cycles after 50k cycles of accelerated-stress tests at 4 A cm(-2). Moreover, the ionomer-free feature enables facile recycling of multiple components of PEMWEs, which is critical to a circular clean hydrogen economy. The supply of iridium is likely to become a bottleneck for hydrogen production. Here, authors develop ionomer-free porous transport electrodes with low iridium loading designed to improve manufacturability and recyclability of electrodes for proton exchange membrane water electrolyzers.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Membrane electrode assembly with additives for proton-exchange membrane water electrolysis in high-voltage operation
    Jung, Guo-bin
    Yu, Jyun-wei
    Lin, Cheng-lung
    Lai, Chun-ju
    Lee, Chi-yuan
    Chan, Shih-hung
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (96) : 40552 - 40558
  • [32] Optimizing oxygen transport in proton exchange membrane water electrolysis through tailored porosity configurations of porous transport layers
    Li, Qing
    He, Yuting
    Zhang, Luteng
    Pan, Liangming
    Sun, Wan
    Ma, Zaiyong
    Zhu, Longxiang
    Lian, Qiang
    Tang, Simiao
    APPLIED ENERGY, 2024, 370
  • [33] Design and operating principles for high-performing anion exchange membrane water electrolyzers
    Tricker, Andrew W.
    Lee, Jason K.
    Shin, Jason R.
    Danilovic, Nemanja
    Weber, Adam Z.
    Peng, Xiong
    JOURNAL OF POWER SOURCES, 2023, 567
  • [34] Durable ultra-low-platinum ionomer-free anode catalyst for hydrogen proton exchange membrane fuel cell
    Ostroverkh, Anna
    Dubau, Martin
    Kus, Peter
    Haviar, Stanislav
    Vaclavu, Michal
    Smid, Bretislav
    Fiala, Roman
    Yakovlev, Yurii
    Ostroverkh, Yevhenii
    Johanek, Viktor
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (06) : 4641 - 4651
  • [35] Silver Compositing Boosts Water Electrolysis Activity and Durability of RuO2 in a Proton-Exchange-Membrane Water Electrolyzer
    Tang, Jiayi
    Zhong, Yijun
    Su, Chao
    Shao, Zongping
    SMALL SCIENCE, 2023, 3 (09):
  • [36] Optimizing Ionomer Distribution in Anode Catalyst Layer for Stable Proton Exchange Membrane Water Electrolysis
    Liu, Han
    Wang, Xinhui
    Lao, Kejie
    Wen, Linrui
    Huang, Meiquan
    Liu, Jiawei
    Hu, Tian
    Hu, Bo
    Xie, Shunji
    Li, Shuirong
    Fang, Xiaoliang
    Zheng, Nanfeng
    Tao, Hua Bing
    ADVANCED MATERIALS, 2024, 36 (28)
  • [37] High-Performing Anion Exchange Membrane Water Electrolysis Using Self-Supported Metal Phosphide Anode Catalysts and an Ether-Free Aromatic Polyelectrolyte
    Sankar, Sasidharan
    Roby, Soni
    Kuroki, Hidenori
    Miyanishi, Shoji
    Tamaki, Takanori
    Anilkumar, Gopinathan M.
    Yamaguchi, Takeo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (03) : 854 - 865
  • [38] Deep learning assisted anode porous transport layer inverse design for proton exchange membrane water electrolysis
    Yang, Xiaoxuan
    Li, Mingliang
    Shen, Jun
    Liu, Zhichun
    Liu, Wei
    Long, Rui
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 233
  • [39] Femtosecond laser-induced surface structuring of the porous transport layers in proton exchange membrane water electrolysis
    Suermann, Michel
    Gimpel, Thomas
    Buehre, Lena, V
    Schade, Wolfgang
    Bensmann, Boris
    Hanke-Rauschenbach, Richard
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (09) : 4898 - 4910
  • [40] Introducing titanium hydride on porous transport layer for more energy efficient water electrolysis with proton exchange membrane
    Bautkinova, Tereza
    Utsch, Nikolai
    Bystron, Tomas
    Lhotka, Miloslav
    Kohoutkova, Martina
    Shviro, Meital
    Bouzek, Karel
    JOURNAL OF POWER SOURCES, 2023, 565