Elucidating the Role of Hydrogen Bonding in the Optical Spectroscopy of the Solvated Green Fluorescent Protein Chromophore: Using Machine Learning to Establish the Importance of High-Level Electronic Structure
被引:13
|
作者:
Chen, Michael S.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Chen, Michael S.
[1
]
Mao, Yuezhi
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Mao, Yuezhi
[1
]
Snider, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Merced, Chem & Biochem, Merced, CA 95343 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Snider, Andrew
[2
]
Gupta, Prachi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Merced, Chem & Biochem, Merced, CA 95343 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Gupta, Prachi
[2
]
Montoya-Castillo, Andres
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Chem, Boulder, CO 80309 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Montoya-Castillo, Andres
[3
]
Zuehlsdorff, Tim J.
论文数: 0引用数: 0
h-index: 0
机构:
Oregon State Univ, Dept Chem, Corvallis, OR 97331 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Zuehlsdorff, Tim J.
[4
]
Isborn, Christine M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Merced, Chem & Biochem, Merced, CA 95343 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Isborn, Christine M.
[2
]
Markland, Thomas E.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Chem, Stanford, CA 94305 USAStanford Univ, Dept Chem, Stanford, CA 94305 USA
Markland, Thomas E.
[1
]
机构:
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Univ Calif Merced, Chem & Biochem, Merced, CA 95343 USA
[3] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[4] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA
Hydrogen bonding interactions with chromophores in chemicalandbiological environments play a key role in determining their electronicabsorption and relaxation processes, which are manifested in theirlinear and multidimensional optical spectra. For chromophores in thecondensed phase, the large number of atoms needed to simulate theenvironment has traditionally prohibited the use of high-level excited-stateelectronic structure methods. By leveraging transfer learning, weshow how to construct machine-learned models to accurately predictthe high-level excitation energies of a chromophore in solution fromonly 400 high-level calculations. We show that when the electronicexcitations of the green fluorescent protein chromophore in waterare treated using EOM-CCSD embedded in a DFT description of the solventthe optical spectrum is correctly captured and that this improvementarises from correctly treating the coupling of the electronic transitionto electric fields, which leads to a larger response upon hydrogenbonding between the chromophore and water.