Multi-band and wide-angle nonreciprocal thermal radiation

被引:48
作者
Chen, Zihe [1 ]
Yu, Shilv [1 ]
Hu, Bin [2 ]
Hu, Run [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff's law; multi-band nonreciprocal thermal radiation; magneto-optical effect; cavity modes; aperiodic multilayer structure;
D O I
10.1016/j.ijheatmasstransfer.2023.124149
中图分类号
O414.1 [热力学];
学科分类号
摘要
Violating Kirchhoff's radiation law through magneto-optical materials or spatiotemporal (Floquet) meta-materials can open a new door for engineering thermal radiation by breaking the widely-accepted equal constraint of spectral absorptivity (alpha) and emissivity (epsilon). Most existing work only reports the unequal alpha and epsilon spectra in one or two bands and within limited angles. This significantly limits the practical applications like the nonreciprocal thermophotovoltaics. In this work, we present a general machine-learning-kernel-based algorithm framework, based on which we achieve four-band nonreciprocal thermal radiation via the magneto-optical (MO) materials. The realization of multi-band nonreciprocity is mainly attributed to the coupling effect of magneto-optical effect and the excitation of cavity modes with different orders, which can be confirmed by investigating the magnetic field distribution. In addition, it is found that dual-band/multi-band strong nonreciprocal thermal radiation can be realized in a wide range of incident angles (15 degrees-85 degrees). The number of bands and range of angle can be further enhanced by modulating the number of layers, structures, materials, and applied magnetic field. The present work offers a general design roadmap for nonreciprocal thermal radiation, and can be extended for designing metamaterials beyond thermal metamaterials. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 31 条
[1]   Monte Carlo tree search for materials design and discovery [J].
Dieb, Thaer M. ;
Ju, Shenghong ;
Shiomi, Junichiro ;
Tsuda, Koji .
MRS COMMUNICATIONS, 2019, 9 (02) :532-536
[2]   Fundamental Limits of the Dew-Harvesting Technology [J].
Dong, Minghao ;
Zhang, Zheng ;
Shi, Yu ;
Zhao, Xiaodong ;
Fan, Shanhui ;
Chen, Zhen .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2020, 24 (01) :43-52
[3]   Nonreciprocal Solar Thermophotovoltaics [J].
Ghalekohneh, Sina Jafari ;
Zhao, Bo .
PHYSICAL REVIEW APPLIED, 2022, 18 (03)
[4]   Theory of thermal emission from periodic structures [J].
Han, S. E. .
PHYSICAL REVIEW B, 2009, 80 (15)
[5]  
Han W., 2021, Opt. Laser Technol., V142
[6]   Machine learning-optimized Tamm emitter for high-performance thermophotovoltaic system with detailed balance analysis [J].
Hu, Run ;
Song, Jinlin ;
Liu, Yida ;
Xi, Wang ;
Zhao, Yiting ;
Yu, Xingjian ;
Cheng, Qiang ;
Tao, Guangming ;
Luo, Xiaobing .
NANO ENERGY, 2020, 72
[7]   Designing Nanostructures for Phonon Transport via Bayesian Optimization [J].
Ju, Shenghong ;
Shiga, Takuma ;
Feng, Lei ;
Hou, Zhufeng ;
Tsuda, Koji ;
Shiomi, Junichiro .
PHYSICAL REVIEW X, 2017, 7 (02)
[8]  
Kirchhoff G., 1860, LOND EDINB, V20, P1, DOI [10.1080/14786446008642901, DOI 10.1080/14786446008642901]
[9]   Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors [J].
Leosson, K. ;
Shayestehaminzadeh, S. ;
Tryggvason, T. K. ;
Kossoy, A. ;
Agnarsson, B. ;
Magnus, F. ;
Olafsson, S. ;
Gudmundsson, J. T. ;
Magnusson, E. B. ;
Shelykh, I. A. .
OPTICS LETTERS, 2012, 37 (19) :4026-4028
[10]   Near-infrared nonreciprocal thermal emitters induced by asymmetric emb e dde d eigenstates [J].
Liu, M. Q. ;
Zhao, C. Y. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 186