Role of shape anisotropy on thermal gradient-driven domain wall dynamics in magnetic nanowires

被引:1
作者
Islam, M. T. [1 ,2 ]
Akanda, M. A. S. [1 ]
Yesmin, F. [1 ]
Pikul, M. A. J. [3 ]
Islam, J. M. T. [1 ]
机构
[1] Khulna Univ, Phys Discipline, Khulna 9208, Bangladesh
[2] Xi An Jiao Tong Univ, Ctr Spintron & Quantum Syst, State Key Lab Mech Behav Mat, 28 Xianning West Rd, Xian 710049, Shanxi, Peoples R China
[3] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA
来源
MODERN PHYSICS LETTERS B | 2023年 / 37卷 / 12期
关键词
Domain wall dynamics; thermal gradient; sLLG equation; shape anisotropy; SPIN-TRANSFER; PROPAGATION;
D O I
10.1142/S0217984923500136
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we investigate the magnetic-domain wall (DW) dynamics in uniaxial/biaxial-nanowires under a thermal gradient (TG). The findings reveal that the DW propagates toward the hotter region in both nanowires. In uniaxial nanowire, the DW propagates accompanying a rotation of the DW-plane. In biaxial nanowire, the DW propagates in the hotter region, and the so-called Walker breakdown phenomenon is observed. The main physics of such DW dynamics is the magnonic angular momentum transfer to the DW. The hard (shape) anisotropy exists in biaxial-nanowire, which contributes an additional torque; hence DW speed is larger than that in uniaxial-nanowire. But the rotational speed is lower initially as hard anisotropy suppresses the DW-rotation. After certain TG, DW-plane overcomes the hard anisotropy and so the rotational speed increases slightly. With lower damping, the DW velocity is smaller and DW velocity increases with damping which is a contrary to usual desire. The reason is predicted as the formation of the standing spin-waves (by superposing the spin waves and its reflection from the boundary) which do not carry any net energy to DW. However, for larger damping, DW velocity decreases with damping since the magnon-propagation length decreases. Therefore, the above findings might be useful to realize the spintronics (i.e. racetrack-memory) devices.
引用
收藏
页数:10
相关论文
共 36 条
  • [1] Magnetic domain-wall logic
    Allwood, DA
    Xiong, G
    Faulkner, CC
    Atkinson, D
    Petit, D
    Cowburn, RP
    [J]. SCIENCE, 2005, 309 (5741) : 1688 - 1692
  • [2] Submicrometer ferromagnetic NOT gate and shift register
    Allwood, DA
    Xiong, G
    Cooke, MD
    Faulkner, CC
    Atkinson, D
    Vernier, N
    Cowburn, RP
    [J]. SCIENCE, 2002, 296 (5575) : 2003 - 2006
  • [3] Altbir D., 2020, BRAZ J BIOL, V10, P1
  • [4] Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure
    Atkinson, D
    Allwood, DA
    Xiong, G
    Cooke, MD
    Faulkner, CC
    Cowburn, RP
    [J]. NATURE MATERIALS, 2003, 2 (02) : 85 - 87
  • [5] Bauer GEW, 2012, NAT MATER, V11, P391, DOI [10.1038/nmat3301, 10.1038/NMAT3301]
  • [6] Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires
    Beach, GSD
    Nistor, C
    Knutson, C
    Tsoi, M
    Erskine, JL
    [J]. NATURE MATERIALS, 2005, 4 (10) : 741 - 744
  • [7] Emission of spin waves by a magnetic multilayer traversed by a current
    Berger, L
    [J]. PHYSICAL REVIEW B, 1996, 54 (13): : 9353 - 9358
  • [8] THERMAL FLUCTUATIONS OF A SINGLE-DOMAIN PARTICLE
    BROWN, WF
    [J]. PHYSICAL REVIEW, 1963, 130 (05): : 1677 - +
  • [9] Thermally driven domain-wall motion in Fe on W(110)
    Chico, Jonathan
    Etz, Corina
    Bergqvist, Lars
    Eriksson, Olle
    Fransson, Jonas
    Delin, Anna
    Bergman, Anders
    [J]. PHYSICAL REVIEW B, 2014, 90 (01):
  • [10] Longitudinal spin current induced by a temperature gradient in a ferromagnetic insulator
    Etesami, S. R.
    Chotorlishvili, L.
    Sukhov, A.
    Berakdar, J.
    [J]. PHYSICAL REVIEW B, 2014, 90 (01)