All-Transfer Electrode Interface Engineering Toward Harsh-Environment-Resistant MoS2 Field-Effect Transistors

被引:17
|
作者
Wu, Yonghuang [1 ]
Xin, Zeqin [1 ]
Zhang, Zhibin [2 ]
Wang, Bolun [1 ]
Peng, Ruixuan [1 ]
Wang, Enze [1 ]
Shi, Run [1 ]
Liu, Yiqun [1 ]
Guo, Jing [1 ]
Liu, Kaihui [1 ]
Liu, Kai [2 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Peking Univ, Sch Phys, Frontiers Sci Ctr Nanooptoelect, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
field-effect transistors; harsh-environment resistance; interface engineering; molybdenum disulfide; van der Waals electrodes; 2-DIMENSIONAL MATERIALS; CONTACT; GRAPHENE; TITANIUM; RELIABILITY; TECHNOLOGY; STABILITY; SILICON; GROWTH; XPS;
D O I
10.1002/adma.202210735
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free interfaces are of vital importance for building nanoscale harsh-environment-resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode-channel interfaces. Here, harsh-environment-resistant MoS2 transistors are developed by engineering electrode-channel interfaces with an all-transfer of van der Waals electrodes. The delivered defect-free, graphene-buffered electrodes keep the electrode-channel interfaces intact and robust. As a result, the as-fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on-state current and high carrier mobility. More importantly, the defect-free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode-MoS2 interfaces. This enables high resistances of MoS2 devices with all-transfer electrodes to various harsh environments, including humid, oxidizing, and high-temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode-channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh-environment-resistant devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Interface Engineering for High-Performance Top-Gated MoS2 Field-Effect Transistors
    Zou, Xuming
    Wang, Jingli
    Chiu, Chung-Hua
    Wu, Yun
    Xiao, Xiangheng
    Jiang, Changzhong
    Wu, Wen-Wei
    Mai, Liqiang
    Chen, Tangsheng
    Li, Jinchai
    Ho, Johnny C.
    Liao, Lei
    ADVANCED MATERIALS, 2014, 26 (36) : 6255 - 6261
  • [2] Electron Irradiation of Metal Contacts in Monolayer MoS2 Field-Effect Transistors
    Pelella, Aniello
    Kharsah, Osamah
    Grillo, Alessandro
    Urban, Francesca
    Passacantando, Maurizio
    Giubileo, Filippo
    Iemmo, Laura
    Sleziona, Stephan
    Pollmann, Erik
    Madauss, Lukas
    Schleberger, Marika
    Di Bartolomeo, Antonio
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (36) : 40532 - 40540
  • [3] Trapped charge modulation at the MoS2/SiO2 interface by a lateral electric field in MoS2 field-effect transistors
    Pak, Jinsu
    Cho, Kyungjune
    Kim, Jae-Keun
    Jang, Yeonsik
    Shin, Jiwon
    Kim, Jaeyoung
    Seo, Junseok
    Chung, Seungjun
    Lee, Takhee
    NANO FUTURES, 2019, 3 (01)
  • [4] Energetic mapping of oxide traps in MoS2 field-effect transistors
    Illarionov, Yury Yu
    Knobloch, Theresia
    Waltl, Michael
    Rzepa, Gerhard
    Pospischil, Andreas
    Polyushkin, Dmitry K.
    Furchi, Marco M.
    Mueller, Thomas
    Grasser, Tibor
    2D MATERIALS, 2017, 4 (02):
  • [5] The role of charge trapping in MoS2/SiO2 and MoS2/hBN field-effect transistors
    Illarionov, Yury Yu
    Rzepa, Gerhard
    Waltl, Michael
    Knobloch, Theresia
    Grill, Alexander
    Furchi, Marco M.
    Mueller, Thomas
    Grasser, Tibor
    2D MATERIALS, 2016, 3 (03):
  • [6] Improving the Stability of High-Performance Multilayer MoS2 Field-Effect Transistors
    Liu, Na
    Baek, Jongyeol
    Kim, Seung Min
    Hong, Seongin
    Hong, Young Ki
    Kim, Yang Soo
    Kim, Hyun-Suk
    Kim, Sunkook
    Park, Jozeph
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (49) : 42943 - 42950
  • [7] Flexible High-Temperature MoS2 Field-Effect Transistors and Logic Gates
    Zou, Yixuan
    Li, Peng
    Su, Caizhen
    Yan, Jiawen
    Zhao, Haojie
    Zhang, Zekun
    You, Zheng
    ACS NANO, 2024, 18 (13) : 9627 - 9635
  • [8] Reduced dopant-induced scattering in remote charge-transfer-doped MoS2 field-effect transistors
    Jang, Juntae
    Kim, Jae-Keun
    Shin, Jiwon
    Kim, Jaeyoung
    Baek, Kyeong-Yoon
    Park, Jaehyoung
    Park, Seungmin
    Kim, Young Duck
    Parkin, Stuart S. P.
    Kang, Keehoon
    Cho, Kyungjune
    Lee, Takhee
    SCIENCE ADVANCES, 2022, 8 (38)
  • [9] Schottky barrier height engineering on MoS2 field-effect transistors using a polymer surface modifier on a contact electrode
    Choi, Dongwon
    Jeon, Jeehoon
    Park, Tae-Eon
    Ju, Byeong-Kwon
    Lee, Ki-Young
    DISCOVER NANO, 2023, 18 (01)
  • [10] MoS2 Field-Effect Transistors With Graphene/Metal Heterocontacts
    Du, Yuchen
    Yang, Lingming
    Zhang, Jingyun
    Liu, Han
    Majumdar, Kausik
    Kirsch, Paul D.
    Ye, Peide D.
    IEEE ELECTRON DEVICE LETTERS, 2014, 35 (05) : 599 - 601