On Nonlinear ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions

被引:7
作者
Arul, Ramasamy [1 ]
Karthikeyan, Panjayan [2 ]
Karthikeyan, Kulandhaivel [3 ]
Geetha, Palanisamy [3 ]
Alruwaily, Ymnah [4 ]
Almaghamsi, Lamya [5 ]
El-hady, El-sayed [4 ,6 ]
机构
[1] Gnanamani Coll Technol, Dept Math, Namakkal 637018, Tamil Nadu, India
[2] Sri Vasavi Coll, Dept Math, Erode 638316, Tamil Nadu, India
[3] KPR Inst Engn & Technol, Dept Math, Coimbatore 641407, Tamil Nadu, India
[4] Jouf Univ, Coll Sci, Math Dept, POB 2014, Sakaka 72388, Saudi Arabia
[5] Univ Jeddah, Coll Sci, Dept Math, POB 80327, Jeddah 21589, Saudi Arabia
[6] Suez Canal Univ, Fac Comp & Informat, Basic Sci Dept, Ismailia 41522, Egypt
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
fractional differential equations; Caputo fractional derivative; fractional boundary conditions; existence and uniqueness; FIXED-POINT THEOREM;
D O I
10.3390/sym15010005
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a solution to the symmetric nonlinear psi-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to prove the uniqueness results, while Krasnoselkii's fixed point technique is used to prove the existence results. Additionally, an example is used to explain the results. In this manner, our results represent generalized versions of some recent interesting contributions.
引用
收藏
页数:11
相关论文
共 37 条
[1]  
Abdo MS, 2019, P INDIAN AS-MATH SCI, V129, DOI 10.1007/s12044-019-0514-8
[2]   NON-INSTANTANEOUS IMPULSES IN CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Agarwal, Ravi ;
Hristova, Snezhana ;
O'Regan, Donal .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (03) :595-622
[3]  
Aissani Khalida, 2019, Cubo, V21, P61
[4]   Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Odzijewicz, Tatiana .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (06)
[5]   A Caputo fractional derivative of a function with respect to another function [J].
Almeida, Ricardo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :460-481
[6]   On new existence results for fractional integro-differential equations with impulsive and integral conditions [J].
Anguraj, A. ;
Karthikeyan, P. ;
Rivero, M. ;
Trujillo, J. J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 66 (12) :2587-2594
[7]   Novel Stability Results for Caputo Fractional Differential Equations [J].
Ben Makhlouf, Abdellatif ;
El-Hady, El-Sayed .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
[8]  
Benchohra M., 2008, Surveys in Mathematics and its Applications, V3, P1
[9]   Computational Methods for Parameter Identification in 2D Fractional System with Riemann-Liouville Derivative [J].
Brociek, Rafal ;
Wajda, Agata ;
Lo Sciuto, Grazia ;
Slota, Damian ;
Capizzi, Giacomo .
SENSORS, 2022, 22 (09)
[10]   Parameter Identification in the Two-Dimensional Riesz Space Fractional Diffusion Equation [J].
Brociek, Rafal ;
Chmielowska, Agata ;
Slota, Damian .
FRACTAL AND FRACTIONAL, 2020, 4 (03) :1-10